Bending Fatigue Properties of Ultra-High Toughness Cementitious Composite (UHTCC)
Abstract
:1. Introduction
2. Materials and Experiment
2.1. Experimental Materials
2.2. Methods
3. Results and Discussion
3.1. Influence of Fiber Content on Static Mechanical Properties
3.2. Effect of Fiber Content on Flexural Toughness
3.3. Effect of Fiber Content on Bending Fatigue Properties
3.4. Bending Fatigue Damage Analysis
4. Conclusions
- The hybrid fiber specimens obtained the same toughness as the single-doped steel fiber specimens with less fiber content. PVA fiber exerts a profound influence on both enhancing toughness and augmenting crack deflection in composite materials. The flexural toughness index of hybrid fiber UHTCC surpasses that of SF1.5P0 by up to 18.6%.
- At a low-stress level, the fatigue life of PVA fiber increases more significantly, which reaches the highest increase of 43.2% at SF1P4. The working time ratio of UHTCC band cracks increases with the increase in stress level. The effect of hybrid fibers can be attributed to the suppression of various cracks in the matrix at various stages and the enhancement of the cracking space of the composite materials.
- Incorporating mixed PVA fiber triggers early activation, facilitating stable cracking during the fatigue failure progression of specimens. This early activation advances the strain stability development phase and mitigates external load through the formation of additional micro-cracks. Consequently, the initial strain ε0 of SF1P5 is 143.43% higher than that of SF1P0. Compared with single-doped steel fiber, the ultimate strain of hybrid fiber specimen increases by 16.9%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, J.; Gou, S.; Ding, R.; Zhang, J.; Shi, Z. Experimental and analytical research on the flexural behaviour of steel–ECC composite beams under negative bending moments. Eng. Struct. 2020, 210, 110309. [Google Scholar] [CrossRef]
- Li, Q.; Wang, G.; Tong, J.; Xu, S. Flexural capacity of steel-UHTCC (ultra-high toughness cementitious composite) bridge deck considering different shear connection degrees. Adv. Struct. Eng. 2022, 25, 1907–1922. [Google Scholar] [CrossRef]
- Zhang, C.; Guan, X.; Tian, J.; Li, Y.; Lyu, J. Corrosion resistance of RC/UHTCC beams with various healing promoters in marine environment. Cem. Concr. Compos. 2022, 131, 104604. [Google Scholar] [CrossRef]
- Xu, S.; Xie, H.; Li, Q.; Hong, C.; Liu, J.; Wang, Q. Bending performance of RC slabs strengthened by CFRP sheets using sprayed UHTCC as bonding layer: Experimental study and theoretical analysis. Eng. Struct. 2023, 292, 116575. [Google Scholar] [CrossRef]
- Tong, J.; Chen, Y.; Li, Q.; Xu, S.; Chen, T.; Gao, W. Experimental and Numerical Study of Transversal Flexural Behavior on Steel Ultrahigh-Toughness Cementitious Composite Bridge Decks. J. Bridge Eng. 2023, 28, 04023044. [Google Scholar] [CrossRef]
- Wang, G.; Tong, J.; Li, Q.; Xu, S.; Dai, J. Flexural Performance and Design of Steel-UHTCC Composite Bridge Decks with Different Composite Degrees under Hogging Moments. J. Struct. Eng. 2023, 149, 04023023. [Google Scholar] [CrossRef]
- Ma, X.; Liu, L. Fatigue properties of RC beams reinforced with ECC layer and steel plate. Constr. Build. Mater. 2023, 372, 130799. [Google Scholar] [CrossRef]
- Riyar, R.L.; Bhowmik, S. Fatigue behaviour of plain and reinforced concrete: A systematic review. Theor. Appl. Fract. Mech. 2023, 125, 103867. [Google Scholar] [CrossRef]
- He, H.; Liang, X.; Shang, J.; Long, Y. Experimental study on residual mechanical properties after cyclic loading of steel-concrete composite-laminated beams. Case Stud. Constr. Mater. 2023, 19, e02257. [Google Scholar] [CrossRef]
- Liang, L.; Liu, C.; Cui, Y.; Li, Y.; Chen, Z.; Wang, Z.; Yao, Z. Characterizing fatigue damage behaviors of concrete beam specimens in varying amplitude load. Case Stud. Constr. Mater. 2023, 19, e02305. [Google Scholar] [CrossRef]
- Cui, T.; Ning, B.; Shi, X.; Li, J. Flexural fatigue behavior of hybrid steel-polypropylene fiber reinforced high-strength lightweight aggregate concrete. Constr. Build. Mater. 2023, 377, 131079. [Google Scholar] [CrossRef]
- Ferreira, E.; Sotoudeh, P.; Svecova, D. Fatigue life of plain concrete subjected to low frequency uniaxial stress reversal loading. Constr. Build. Mater. 2024, 411, 134247. [Google Scholar] [CrossRef]
- Guo, C.; Li, J. A fast fatigue life estimation method for concrete based on the energy dissipation approach. Int. J. Fatigue 2023, 177, 107948. [Google Scholar] [CrossRef]
- Kumar, B.; Sharma, A.; Ray, S. Characterization of crack-bridging and size effect on ultra-high performance fibre reinforced concrete under fatigue loading. Int. J. Fatigue 2024, 182, 108158. [Google Scholar] [CrossRef]
- Huang, B.; Li, Q.; Xu, S.; Zhou, B. Tensile fatigue behavior of fiber-reinforced cementitious material with high ductility: Experimental study and novel PSN model. Constr. Build. Mater. 2018, 178, 349–359. [Google Scholar] [CrossRef]
- Li, H.; Xu, S. Rate dependence of ultra high toughness cementitious composite under direct tension. J. Zhejiang Univ.-Sci. A 2016, 17, 417–426. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, X.; Cai, L.; Peng, Q.; Wu, H.; Zhou, F. The effects of tensile strain rate on the dynamic tensile behavior of ultra high toughness cementitious composite. J. Build. Eng. 2023, 68, 106199. [Google Scholar] [CrossRef]
- Huang, B.; Li, Q.; Xu, S.; Zhang, L. Static and fatigue performance of reinforced concrete beam strengthened with strain-hardening fiber-reinforced cementitious composite. Eng. Struct. 2019, 199, 109576. [Google Scholar] [CrossRef]
- Huang, B.; Dai, J.; Weng, K.; Zhu, J.; Shah, S.P. Flexural performance of UHPC–concrete–ECC composite member reinforced with perforated steel plates. J. Struct. Eng. 2021, 147, 04021065. [Google Scholar] [CrossRef]
- Li, Q.; Luo, A.; Hong, C.; Wang, G.; Yin, X.; Xu, S. Fatigue behavior of short-headed studs embedded in Ultra-high Toughness Cementitious Composites (UHTCC). Eng. Struct. 2024, 300, 117194. [Google Scholar] [CrossRef]
- Xu, S.; Lyu, Y.; Xu, S.; Li, Q. Enhancing the initial cracking fracture toughness of steel-polyvinyl alcohol hybrid fibers ultra high toughness cementitious composites by incorporating multi-walled carbon nanotubes. Constr. Build. Mater. 2019, 195, 269–282. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, G.; Shen, Z.; Gao, Y.; Zhou, H.; Wang, Z. A comprehensive study on the effect of reinforcing methods on the flexural behaviour of Concrete-RUHTCC composite beams. Eng. Struct. 2023, 292, 116524. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Yang, F.; Weng, Y.; Qian, S. Sustainable high strength, high ductility engineered cementitious composites (ECC) with substitution of cement by rice husk ash. J. Clean. Prod. 2021, 317, 128379. [Google Scholar] [CrossRef]
- Kim, M.; Oh, T.; Yoo, D. Mechanical performance of ultra-high-performance strain-hardening cementitious composites according to binder composition and curing conditions. Arch. Civ. Mech. Eng. 2022, 22, 63. [Google Scholar] [CrossRef]
- Liu, T.; Bai, R.; Chen, Z.; Li, Y.; Yang, Y. Tailoring of polyethylene fiber surface by coating silane coupling agent for strain hardening cementitious composite. Constr. Build. Mater. 2021, 278, 122263. [Google Scholar] [CrossRef]
- Lao, J.; Xu, L.; Huang, B.; Dai, J.; Shah, S.P. Strain-hardening Ultra-High-Performance Geopolymer Concrete (UHPGC): Matrix design and effect of steel fibers. Compos. Commun. 2022, 30, 101081. [Google Scholar] [CrossRef]
- Ma, K.; Deng, H.; Guo, X.; Yin, J.; Zhao, Y. The investigating on mechanical properties of engineered cementitious composites with high ductility and low cost. J. Build. Eng. 2022, 57, 104873. [Google Scholar] [CrossRef]
- Huang, B.; Zhu, J.; Weng, K.; Li, V.C.; Dai, J. Ultra-high-strength engineered/strain-hardening cementitious composites (ECC/SHCC): Material design and effect of fiber hybridization. Cem. Concr. Compos. 2022, 129, 104464. [Google Scholar] [CrossRef]
- Tinoco, M.P.; de Andrade Silva, F. Repair of pre-damaged RC beams using hybrid fiber reinforced strain hardening cementitious composites. Eng. Struct. 2021, 235, 112081. [Google Scholar] [CrossRef]
- Yang, B.; Wang, C.; Chen, S.; Qiu, K.; Jiang, J. Optimisation of the Mechanical Properties and Mix Proportion of Multiscale-Fibre-Reinforced Engineered Cementitious Composites. Polymers 2023, 15, 3531. [Google Scholar] [CrossRef]
- Qin, Y.; Huang, K.; Wang, Y.; Wang, A.; Wu, J. Study on mechanical and shrinkage properties of ultra-high strength cement-based composites. Concr. Cem. Prod. 2020, 3, 1–5. [Google Scholar] [CrossRef]
- Chu, H.; Wang, Q.; Zhang, W. Optimizing ecological ultra-high performance concrete prepared with incineration bottom ash: Utilization of Al2O3 micro powder for improved mechanical properties and durability. Constr. Build. Mater. 2024, 426, 136152. [Google Scholar] [CrossRef]
- Chu, H.; Wang, Q.; Gao, L.; Jiang, J.; Wang, F. An approach of producing Ultra-High-Performance concrete with high elastic modulus by Nano-Al2O3: A preliminary study. Materials 2022, 15, 8118. [Google Scholar] [CrossRef]
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). Standardization Administration: Beijing, China, 2021.
- ASTMC1609/C1609M-2005; Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading). American Society for Testing and Materials: West Conshohocken, PA, USA, 2005.
- Shui, F.; Su, J.; Huang, J.; Li, Y.; Qian, W. Research on Flexural Properties and Flexural Toughness Evaluation Method of Steel Fiber Reinforced Cementitious Composites under Polar Low Temperatures. Adv. Civ. Eng. 2024, 2024, 1137438. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, D.J.; Ryu, G.S.; Koh, K.T. Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cem. Concr. Compos. 2012, 34, 172–184. [Google Scholar] [CrossRef]
- Zhao, D.; Kong, W.; Song, X. Statistical Analysis for Fatigue Life of Concrete. Key Eng. Mater. 2008, 385, 285–288. [Google Scholar] [CrossRef]
- Xu, L.; Huang, B.; Li, V.C.; Dai, J. High-strength high-ductility Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) incorporating geopolymer fine aggregates. Cem. Concr. Compos. 2022, 125, 104296. [Google Scholar] [CrossRef]
- Christensen, R.M. An evaluation of linear cumulative damage (Miner’s Law) using kinetic crack growth theory. Mech. Time-Depend. Mater. 2002, 6, 363–377. [Google Scholar] [CrossRef]
Length (mm) | Equivalent Diameter (mm) | Density (kg/m3) | Fusing Point (°C) | Tensile Strength (MPa) |
---|---|---|---|---|
13.12 | 0.20 | 7800 | 1200 | 2868 |
Length (mm) | Equivalent Diameter (um) | Density (g/cm3) | Initial Modulus (MPa) | Elongation at Break (%) | Breaking Strength (MPa) |
---|---|---|---|---|---|
12 | 15 | 0.9 | 35.7 × 103 | 19.47 | 1589 |
Cementing Material | Water–Binder Ratio | Sand Binder Ratio | Water Reducer (%) | Stabilizer (%) |
---|---|---|---|---|
1 | 0.22 | 1.0 | 0.7 | 0.4 |
Test | Specimen Size | Number of Specimens |
---|---|---|
Flexural and compressive tests | 160 mm × 40 mm × 40 mm | 3 |
Three-point bending test | 380 mm × 65 mm × 50 mm | 4 |
Bending fatigue test | 380 mm × 65 mm × 50 mm | 6 |
Specimen Number | SF0P0 | SF1P0 | SF1.5P0 | SF1P5 | SF1P4 | SF1P3 |
---|---|---|---|---|---|---|
Cracking Deflection (mm) | 0.42 | 0.53 | 1.74 | 1.20 | 1.21 | 1.26 |
Flexural toughness index (J) | 0.98 | 20.68 | 28.45 | 30.37 | 33.74 | 22.74 |
Specimen Number | SF0P0 | SF1P0 | SF1.5P0 | SF1P5 | SF1P4 | SF1P3 |
---|---|---|---|---|---|---|
Mean fatigue life (times) | 264,132 | 1,037,359 | 1,248,526 | 1,346,539 | 1,485,994 | 1,391,845 |
Specimen Number | SF0P0 | SF1P0 | SF1.5P0 | SF1P5 | SF1P4 | SF1P3 |
---|---|---|---|---|---|---|
−20.7894 | −26.3432 | −24.5201 | −31.0026 | −31.0606 | −28.2101 | |
1.6400 | 1.8785 | 1.7244 | 2.1724 | 2.1615 | 1.9712 | |
R2 | 0.9450 | 0.9041 | 0.8625 | 0.9164 | 0.9139 | 0.9739 |
Specimen Number | Fatigue Damage Equation | R2 | ε0 (με) | εf (με) |
---|---|---|---|---|
SF0P0-0.7 | ε = 262.28D3 − 379.32D2 + 178.99D + 99.52 | 0.9869 | 99.52 | 161.47 |
SF1P0-0.7 | ε = 1430.70D3 − 2853.68D2 + 1781.96D + 39.35 | 0.9059 | 39.35 | 398.33 |
SF1.5P0-0.7 | ε = 1618.98D3 − 2956.68D2 + 1726.26D + 32.02 | 0.9054 | 32.02 | 420.58 |
SF1P5-0.7 | ε = 1038.12D3 − 2265.67D2 + 1597.43D + 95.79 | 0.9616 | 95.79 | 465.67 |
SF1P4-0.7 | ε = 996.28D3 − 2296.80D2 + 1646.49D + 114.86 | 0.9505 | 114.86 | 460.83 |
SF1P3-0.7 | ε = 1620.52D3 − 3262.98D2 + 2067.65D + 22.25 | 0.9713 | 22.25 | 447.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Huang, K.; Shen, G.; Miao, Y.; Wu, J. Bending Fatigue Properties of Ultra-High Toughness Cementitious Composite (UHTCC). Materials 2024, 17, 3128. https://doi.org/10.3390/ma17133128
Wang P, Huang K, Shen G, Miao Y, Wu J. Bending Fatigue Properties of Ultra-High Toughness Cementitious Composite (UHTCC). Materials. 2024; 17(13):3128. https://doi.org/10.3390/ma17133128
Chicago/Turabian StyleWang, Pengju, Kaijian Huang, Gong Shen, Yixin Miao, and Jiansheng Wu. 2024. "Bending Fatigue Properties of Ultra-High Toughness Cementitious Composite (UHTCC)" Materials 17, no. 13: 3128. https://doi.org/10.3390/ma17133128
APA StyleWang, P., Huang, K., Shen, G., Miao, Y., & Wu, J. (2024). Bending Fatigue Properties of Ultra-High Toughness Cementitious Composite (UHTCC). Materials, 17(13), 3128. https://doi.org/10.3390/ma17133128