Application of Engineered Nanomaterials as Nanocatalysts in Catalytic Ozonation: A Review
Abstract
:1. Introduction
2. Metal/Metal Oxide-Based Catalysts
2.1. Iron-Based Catalyst
2.2. Zinc Oxide
2.3. Aluminium Oxide
2.4. Magnesium Oxide
2.5. Nickel Oxide
2.6. Copper Oxide
2.7. Silver-Based Catalyst
2.8. Gold-Based Catalyst
2.9. Manganese Oxide
2.10. Titanium Dioxide
3. Carbon-Based Catalysts
3.1. Graphene Oxide
3.2. Carbon Nanotubes
3.3. Carbon Nanofibers
3.4. Carbon Dots
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grey, D.; Garrick, D.; Blackmore, D.; Kelman, J.; Muller, M.; Sadoff, C. Water security in one blue planet: Twenty-first century policy challenges for science. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120406. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A. Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Sustainability 2023, 15, 10940. [Google Scholar] [CrossRef]
- Lu, F.; Astruc, D. Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord. Chem. Rev. 2020, 408, 213180. [Google Scholar] [CrossRef]
- Kurian, M. Advanced oxidation processes and nanomaterials—A review. Clean. Eng. Technol. 2021, 2, 100090. [Google Scholar] [CrossRef]
- Vinayagam, V.; Palani, K.N.; Ganesh, S.; Rajesh, S.; Akula, V.V.; Avoodaiappan, R.; Kushwaha, O.S.; Pugazhendhi, A. Recent developments on advanced oxidation processes for degradation of pollutants from wastewater with focus on antibiotics and organic dyes. Environ. Res. 2024, 240, 117500. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.V.; Hassani, A.; Eghbali, P.; Nidheesh, P.V. Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes. Curr. Opin. Solid State Mater. Sci. 2022, 26, 100965. [Google Scholar] [CrossRef]
- Dong, G.; Chen, B.; Liu, B.; Hounjet, L.J.; Cao, Y.; Stoyanov, S.R.; Yang, M.; Zhang, B. Advanced oxidation processes in microreactors for water and wastewater treatment: Development, challenges, and opportunities. Water Res. 2022, 211, 118047. [Google Scholar] [CrossRef] [PubMed]
- Buthiyappan, A.; Abdul Aziz, A.R.; Wan Daud, W.M.A. Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev. Chem. Eng. 2016, 32, 1–47. [Google Scholar] [CrossRef]
- Ma, D.; Yi, H.; Lai, C.; Liu, X.; Huo, X.; An, Z.; Li, L.; Fu, Y.; Li, B.; Zhang, M.; et al. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 2021, 275, 130104. [Google Scholar] [CrossRef]
- Iqbal, J.; Shah, N.S.; Ali Khan, J.; Naushad, M.; Boczkaj, G.; Jamil, F.; Khan, S.; Li, L.; Murtaza, B.; Han, C. Pharmaceuticals wastewater treatment via different advanced oxidation processes: Reaction mechanism, operational factors, toxicities, and cost evaluation—A review. Sep. Purif. Technol. 2024, 347, 127458. [Google Scholar] [CrossRef]
- Cardoso, I.M.F.; Cardoso, R.M.F.; Esteves da Silva, J.C.G. Advanced Oxidation Processes Coupled with Nanomaterials for Water Treatment. Nanomaterials 2021, 11, 2045. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, J.; Lodh, B.K.; Sharma, R.; Mahata, N.; Shah, M.P.; Mandal, S.; Ghanta, S.; Bhunia, B. Advanced oxidation process for the treatment of industrial wastewater: A review on strategies, mechanisms, bottlenecks and prospects. Chemosphere 2023, 345, 140473. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.U.H.; Gul, N.S.; Sabahat, S.; Sun, J.; Tahir, K.; Shah, N.S.; Muhammad, N.; Rahim, A.; Imran, M.; Iqbal, J.; et al. Removal of organic pollutants through hydroxyl radical-based advanced oxidation processes. Ecotoxicol. Environ. Saf. 2023, 267, 115564. [Google Scholar] [CrossRef] [PubMed]
- Rekhate, C.V.; Srivastava, J.K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater—A review. Chem. Eng. J. Adv. 2020, 3, 100031. [Google Scholar] [CrossRef]
- Cardoso, R.M.F.; Cardoso, I.M.F.; da Silva, L.P.; da Silva, J.C.G.E. Copper(II)-Doped Carbon Dots as Catalyst for Ozone Degradation of Textile Dyes. Nanomaterials 2022, 12, 1211. [Google Scholar] [CrossRef]
- Fallah, N.; Bloise, E.; Santoro, D.; Mele, G. State of Art and Perspectives in Catalytic Ozonation for Removal of Organic Pollutants in Water: Influence of Process and Operational Parameters. Catalysts 2023, 13, 324. [Google Scholar] [CrossRef]
- Hu, E.; Wu, X.; Shang, S.; Tao, X.M.; Jiang, S.X.; Gan, L. Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J. Clean. Prod. 2016, 112, 4710–4718. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water 2019, 12, 102. [Google Scholar] [CrossRef]
- Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef]
- Malik, S.N.; Ghosh, P.C.; Vaidya, A.N.; Mudliar, S.N. Catalytic ozone pretreatment of complex textile effluent using Fe2+ and zero valent iron nanoparticles. J. Hazard. Mater. 2018, 357, 363–375. [Google Scholar] [CrossRef]
- Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J. 2016, 286, 640–662. [Google Scholar] [CrossRef]
- Jin, X.; Wu, C.; Fu, L.; Tian, X.; Wang, P.; Zhou, Y.; Zuo, J. Development, dilemma and potential strategies for the application of nanocatalysts in wastewater catalytic ozonation: A review. J. Environ. Sci. 2023, 124, 330–349. [Google Scholar] [CrossRef] [PubMed]
- Bandaru, S.; Sen, A.; Pramanik, G.; Dalapati, G.K.; Biring, S.; Chakrabortty, S. Efficient wastewater treatment through nano-catalyst: The role of H2O2 and application in wide pH window. Environ. Adv. 2023, 13, 100428. [Google Scholar] [CrossRef]
- Hildebrand, H.; Mackenzie, K.; Kopinke, F.D. Pd/Fe3O4 nano-catalysts for selective dehalogenation in wastewater treatment processes—Influence of water constituents. Appl. Catal. B Environ. 2009, 91, 389–396. [Google Scholar] [CrossRef]
- Nyabadza, A.; Makhesana, M.; Plouze, A.; Kumar, A.; Ramirez, I.; Krishnamurthy, S.; Vazquez, M.; Brabazon, D. Advanced nanomaterials and dendrimers in water treatment and the recycling of nanomaterials: A review. J. Environ. Chem. Eng. 2024, 12, 112643. [Google Scholar] [CrossRef]
- Bethi, B.; Sonawane, S.H.; Bhanvase, B.A.; Gumfekar, S.P. Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chem. Eng. Process. Process. Intensif. 2016, 109, 178–189. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Eloffy, M.G.; Priya, A.K.; Yogeshwaran, V.; Elwakeel, K.Z.; Yang, Z.; Lopez-Maldonado, E.A. A review on the synergistic efficacy of sonication-assisted water treatment process with special attention given to microplastics. Chem. Eng. Res. Des. 2024, 206, 524–552. [Google Scholar] [CrossRef]
- Malik, S.N.; Ghosh, P.C.; Vaidya, A.N.; Mudliar, S.N. Hybrid ozonation process for industrial wastewater treatment: Principles and applications: A review. J. Water Process. Eng. 2020, 35, 101193. [Google Scholar] [CrossRef]
- Mahadevan, R.; Palanisamy, S.; Sakthivel, P. Role of nanoparticles as oxidation catalyst in the treatment of textile wastewater: Fundamentals and recent advances. Sustain. Chem. Environ. 2023, 4, 100044. [Google Scholar] [CrossRef]
- González-Labrada, K.; Richard, R.; Andriantsiferana, C.; Valdés, H.; Jáuregui-Haza, U.J.; Manero, M.H. Enhancement of ciprofloxacin degradation in aqueous system by heterogeneous catalytic ozonation. Environ. Sci. Pollut. Res. 2020, 27, 1246–1255. [Google Scholar] [CrossRef]
- Pelalak, R.; Alizadeh, R.; Ghareshabani, E. Enhanced heterogeneous catalytic ozonation of pharmaceutical pollutants using a novel nanostructure of iron-based mineral prepared via plasma technology: A comparative study. J. Hazard. Mater. 2020, 392, 122269. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, M.K.; Mohammed, A.A. Catalytic ozonation for removal of antibiotic oxy-tetracycline using zinc oxide nanoparticles. Appl. Water Sci. 2021, 11, 9. [Google Scholar] [CrossRef]
- Gharbani, P.; Mehrizad, A. Heterogeneous catalytic ozonation process for removal of 4-chloro-2-nitrophenol from aqueous solutions. J. Saudi Chem. Soc. 2014, 18, 601–605. [Google Scholar] [CrossRef]
- Faghihinezhad, M.; Baghdadi, M.; Shahin, M.S.; Torabian, A. Catalytic ozonation of real textile wastewater by magnetic oxidized g-C3N4 modified with Al2O3 nanoparticles as a novel catalyst. Sep. Purif. Technol. 2022, 283, 120208. [Google Scholar] [CrossRef]
- Javadi, N.H.S.; Baghdadi, M.; Mehrdadi, N.; Mortazavi, M. Removal of benzotriazole from secondary municipal wastewater effluent by catalytic ozonation in the presence of magnetic alumina nanocomposite. J. Environ. Chem. Eng. 2018, 6, 6421–6430. [Google Scholar] [CrossRef]
- Yang, D.; Meng, F.; Zhang, Z.; Liu, X. Enhanced Catalytic Ozonation by Mn-Ce Oxide-Loaded Al2O3 Catalyst for Ciprofloxacin Degradation. ACS Omega 2023, 8, 21823–21829. [Google Scholar] [CrossRef] [PubMed]
- Moussavi, G.; Mahmoudi, M. Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals. Chem. Eng. J. 2009, 152, 1–7. [Google Scholar] [CrossRef]
- Asgari, G.; Seidmohammadi, A.; Faradmal, J.; Esrafili, A.; Noori Sepehr, M.; Jafarinia, M. Optimization of synthesis a new composite of nano-MgO, CNT and Graphite as a catalyst in heterogeneous catalytic ozonation for the treatment of pesticide-laden wastewater. J. Water Process. Eng. 2020, 33, 101082. [Google Scholar] [CrossRef]
- El Hassani, K.; Kalnina, D.; Turks, M.; Beakou, B.H.; Anouar, A. Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst. Sep. Purif. Technol. 2019, 210, 764–774. [Google Scholar] [CrossRef]
- He, Y.; Wang, L.; Chen, Z.; Shen, B.; Wei, J.; Zeng, P.; Wen, X. Catalytic ozonation for metoprolol and ibuprofen removal over different MnO2 nanocrystals: Efficiency, transformation and mechanism. Sci. Total Environ. 2021, 785, 147328. [Google Scholar] [CrossRef]
- Sai Sonali Anantha, I.; Venkateswara Rao, A.; Suresh, M.; Jonnalagadda, S.B. An efficient, sustainable catalytic ozonation over Ag/ZrO2 and Ru/ZrO2 for degradation and mineralization of Trichlorophenol. Inorg. Chem. Commun. 2023, 154, 110932. [Google Scholar] [CrossRef]
- Peng, J.; Lu, T.; Ming, H.; Ding, Z.; Yu, Z.; Zhang, J.; Hou, Y. Enhanced Photocatalytic Ozonation of Phenol by Ag/ZnO Nanocomposites. Catalysts 2019, 9, 1006. [Google Scholar] [CrossRef]
- Pugazhenthiran, N.; Sathishkumar, P.; Murugesan, S.; Anandan, S. Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles. Chem. Eng. J. 2011, 168, 1227–1233. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, H.; Wang, F.; Xiong, X.; Tian, K.; Sun, Y.; Yu, T. Application of Heterogeneous Catalytic Ozonation for Refractory Organics in Wastewater. Catalysts 2019, 9, 241. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef]
- Heidari, Z.; Pelalak, R.; Eshaghi Malekshah, R.; Pishnamazi, M.; Rezakazemi, M.; Aminabhavi, T.M.; Shirazian, S. A new insight into catalytic ozonation of sulfasalazine antibiotic by plasma-treated limonite nanostructures: Experimental, modeling and mechanism. Chem. Eng. J. 2022, 428, 131230. [Google Scholar] [CrossRef]
- Bashiri, H.; Rafiee, M. Kinetic Monte Carlo simulation of 2,4,6-thrichloro phenol ozonation in the presence of ZnO nanocatalyst. J. Saudi Chem. Soc. 2016, 20, 474–479. [Google Scholar] [CrossRef]
- Waghchaure, R.H.; Adole, V.A.; Jagdale, B.S. Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: A concise review. Inorg. Chem. Commun. 2022, 143, 109764. [Google Scholar] [CrossRef]
- Mashayekh-Salehi, A.; Moussavi, G.; Yaghmaeian, K. Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as an emerging water contaminant. Chem. Eng. J. 2017, 310, 157–169. [Google Scholar] [CrossRef]
- Mohammadi, L.; Bazrafshan, E.; Ansari-Moghaddam, A.; Balarak, D.; Noroozifar, M.; Barahuie, F. Removing 2,4-dichlorophenol from aqueous environments by heterogeneous catalytic ozonation using synthesized MgO nanoparticles. Water Sci. Technol. 2017, 76, 3054–3068. [Google Scholar] [CrossRef]
- Nozar, S.; Pourmoheb Hosseini, S.M.; Chaibakhsh, N.; Amini, M. Light-assisted catalytic ozonation for efficient degradation of ciprofloxacin using NiO/MoS2 nanocomposite. J. Photochem. Photobiol. A Chem. 2024, 448, 115343. [Google Scholar] [CrossRef]
- Rodríguez, J.L.; Valenzuela, M.A. Ni-based catalysts used in heterogeneous catalytic ozonation for organic pollutant degradation: A minireview. Environ. Sci. Pollut. Res. 2022, 29, 84056–84075. [Google Scholar] [CrossRef] [PubMed]
- Palani, G.; Trilaksana, H.; Sujatha, R.M.; Kannan, K.; Rajendran, S.; Korniejenko, K.; Nykiel, M.; Uthayakumar, M. Silver Nanoparticles for Waste Water Management. Molecules 2023, 28, 3520. [Google Scholar] [CrossRef] [PubMed]
- Rajasekar, R.; Thanasamy, R.; Samuel, M.; Edison, T.N.J.I.; Raman, N. Ecofriendly synthesis of silver nanoparticles using Heterotheca subaxillaris flower and its catalytic performance on reduction of methyl orange. Biochem. Eng. J. 2022, 187, 108447. [Google Scholar] [CrossRef]
- Githala, C.K.; Raj, S.; Dhaka, A.; Mali, S.C.; Trivedi, R. Phyto-fabrication of silver nanoparticles and their catalytic dye degradation and antifungal efficacy. Front. Chem. 2022, 10, 994721. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Cao, J.; Zhao, Y.; Zhang, T.; Zheng, D.; Li, C. Catalytic ozonation treatment of papermaking wastewater by Ag-doped NiFe2O4, Performance and mechanism. J. Environ. Sci. 2020, 97, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Jain, M.; Pandey, A.; Pant, K.K.; Ziora, Z.M.; Blaskovich, M.A.; Shetti, N.P.; Aminabhavi, T.M. Leveraging the potential of silver nanoparticles-based materials towards sustainable water treatment. J. Environ. Manag. 2022, 319, 115675. [Google Scholar] [CrossRef] [PubMed]
- Dardari, O.; El Idrissi, A.; El Ouardi, M.; Channab, B.-E.; Layachi, O.A.; Farsad, S.; Marrane, S.E.; Mazkad, D.; BaQais, A.; Arab, M.; et al. Polyester fabric supported graphene oxide/Cu-Ag bimetallic nanoparticles as a “dip catalyst” for the reduction of p-nitrophenol and organic dyes. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 697, 134314. [Google Scholar] [CrossRef]
- Jiang, P.; Guo, W.; Peng, J.; Peng, W.; Li, H.; Peng, C.; Chen, S. Facile synthesis of MXene-supported bimetallic Ag/Cu nanoparticles composite as efficient catalyst for 4-nitrophenol reduction. Mater. Lett. 2023, 350, 134918. [Google Scholar] [CrossRef]
- Rodrigues, C.S.D.; Silva, R.M.; Carabineiro, S.A.C.; Maldonado-Hódar, F.J.; Madeira, L.M. Wastewater Treatment by Catalytic Wet Peroxidation Using Nano Gold-Based Catalysts: A Review. Catalysts 2019, 9, 478. [Google Scholar] [CrossRef]
- Ayati, A.; Ahmadpour, A.; Bamoharram, F.F.; Tanhaei, B.; Mänttäri, M.; Sillanpää, M. A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere 2014, 107, 163–174. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C. Supported Gold Nanoparticles as Catalysts for the Oxidation of Alcohols and Alkanes. Front. Chem. 2019, 7, 702. [Google Scholar] [CrossRef]
- Maddila, S.; Rana, S.; Pagadala, R.; Maddila, S.N.; Vasam, C.; Jonnalagadda, S.B. Ozone-driven photocatalyzed degradation and mineralization of pesticide, Triclopyr by Au/TiO2. J. Environ. Sci. Health Part B. 2015, 50, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Ancy, K.; Bindhu, M.R.; Bai, J.S.; Gatasheh, M.K.; Hatamleh, A.A.; Ilavenil, S. Photocatalytic degradation of organic synthetic dyes and textile dyeing waste water by Al and F co-doped TiO2 nanoparticles. Environ. Res. 2022, 206, 112492. [Google Scholar] [CrossRef] [PubMed]
- Neeti, K.; Singh, R.; Ahmad, S. The role of green nanomaterials as effective adsorbents and applications in wastewater treatment. Mater. Today Proc. 2023, 77, 269–276. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, J.; Qin, Q.; Zhai, X. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. J. Mol. Catal. A Chem. 2007, 267, 41–48. [Google Scholar] [CrossRef]
- Pedrosa, M.; Pastrana-Martínez, L.M.; Pereira, M.F.R.; Faria, J.L.; Figueiredo, J.L.; Silva, A.M.T. N/S-doped graphene derivatives and TiO2 for catalytic ozonation and photocatalysis of water pollutants. Chem. Eng. J. 2018, 348, 888–897. [Google Scholar] [CrossRef]
- Sui, M.; Xing, S.; Sheng, L.; Huang, S.; Guo, H. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. J. Hazard. Mater. 2012, 227–228, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Restivo, J.; Órfão, J.J.M.; Pereira, M.F.R.; Lapkin, A.A. The role of multiwalled carbon nanotubes (MWCNTs) in the catalytic ozonation of atrazine. Chem. Eng. J. 2014, 241, 66–76. [Google Scholar] [CrossRef]
- Bai, Z.Y.; Yang, Q.; Wang, J.L. Fe3O4/multi-walled carbon nanotubes as an efficient catalyst for catalytic ozonation of p-hydroxybenzoic acid. Int. J. Environ. Sci. Technol. 2016, 13, 483–492. [Google Scholar] [CrossRef]
- Wu, H.; Hu, Z.; Zhan, J.; Cheng, H.; Komarneni, S.; Ma, J. N-doped carbon nanoflakes coordinate with amorphous Fe to activate ozone for degradation of p-nitrophenol. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 676, 132173. [Google Scholar] [CrossRef]
- Dayana Priyadharshini, S.; Manikandan, S.; Kiruthiga, R.; Rednam, U.; Babu, P.S.; Subbaiya, R.; Karmegam, N.; Kim, W.; Govarthanan, M. Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives—A review. Environ. Pollut. 2022, 306, 119377. [Google Scholar] [CrossRef]
- Chung, D.D.L. Carbon Composites: Composites with Carbon Fibers, Nanofibers, and Nanotubes; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-12-804459-9. [Google Scholar]
- Lazarenko, N.S.; Golovakhin, V.V.; Shestakov, A.A.; Lapekin, N.I.; Bannov, A.G. Recent Advances on Membranes for Water Purification Based on Carbon Nanomaterials. Membranes 2022, 12, 915. [Google Scholar] [CrossRef]
- Restivo, J.; Órfão, J.J.M.; Pereira, M.F.R.; Garcia-Bordejé, E.; Roche, P.; Bourdin, D.; Houssais, B.; Coste, M.; Derrouiche, S. Catalytic ozonation of organic micropollutants using carbon nanofibers supported on monoliths. Chem. Eng. J. 2013, 230, 115–123. [Google Scholar] [CrossRef]
- Restivo, J.; Garcia-Bordejé, E.; Órfão, J.J.M.; Pereira, M.F.R. Carbon nanofibers doped with nitrogen for the continuous catalytic ozonation of organic pollutants. Chem. Eng. J. 2016, 293, 102–111. [Google Scholar] [CrossRef]
- Beker, S.A.; Cole, I.; Ball, A.S. A Review on the Catalytic Remediation of Dyes by Tailored Carbon Dots. Water 2022, 14, 1456. [Google Scholar] [CrossRef]
- Ge, G.; Li, L.; Wang, D.; Chen, M.; Zeng, Z.; Xiong, W.; Wu, X.; Guo, C. Carbon dots: Synthesis, properties and biomedical applications. J. Mater. Chem. B 2021, 9, 6553–6575. [Google Scholar] [CrossRef]
- Sendão, R.M.S.; Esteves da Silva, J.C.G.; Pinto da Silva, L. Applications of Fluorescent Carbon Dots as Photocatalysts: A Review. Catalysts 2023, 13, 179. [Google Scholar] [CrossRef]
- Cui, L.; Ren, X.; Sun, M.; Liu, H.; Xia, L. Carbon Dots: Synthesis, Properties and Applications. Nanomaterials 2021, 11, 3419. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, I.M.F.; Cardoso, R.M.F.; da Silva, L.P.; da Silva, J.C.G.E. UV-Based Advanced Oxidation Processes of Remazol Brilliant Blue R Dye Catalyzed by Carbon Dots. Nanomaterials 2022, 12, 2116. [Google Scholar] [CrossRef] [PubMed]
- Le, V.R.; Nguyen, T.B.; Chen, C.W.; Huang, C.P.; Bui, X.T.; Dong, C.D. Catalytic ozonation performance of graphene quantum dot doped MnOOH nanorod for effective treatment of ciprofloxacin and bromate formation control in water. Sep. Purif. Technol. 2023, 315, 123672. [Google Scholar] [CrossRef]
Target Pollutants | Catalysts | Rate Constants | Degradation Rate | Reference |
---|---|---|---|---|
Complex textile effluent | Fe2+ nZVI | k = 0.0451 h−1 k = 0.0569 h−1 | 98.5% decolorization (24 h) | [20] |
Ciprofloxacin (CIP) | Fe/ZSM-5 zeolite | k = 0.4129 × 10−3 s−1 | 100% CIP degradation (5 min) | [30] |
Sulfasalazine (SSZ) | α-FeOOH nanoparticle (PTG-N2) | k = 0.076 min−1 | 96.05% SSZ degradation (40 min) | [31] |
Oxy-tetracycline (OTC) | Zinc oxide nanoparticles (ZnO) | k = 0.108 min−1 | 94% OTC removal (35 min) | [32] |
4-chloro-2-nitrophenol (4C2NP) | Zinc oxide nanoparticles (ZnO) | k = 3.10 × 10−3 s−1 | 98.7% 4C2NP degradation (5 min) | [33] |
Textile wastewater | O@gC3N4/Al2O3 | k = 0.1552 min−1 | 99% decolorization (60 min) | [34] |
Benzotriazole (BT) | Magnetic alumina nanocomposite (MANC) | k = 0.1957 min−1 | 76% BT removal (6 min) | [35] |
Ciprofloxacin (CIP) | Mn–Ce/Al2O3 | k = 0.0309 min−1 | 85.1% CIP degradation (60 min) | [36] |
Reactive red 198 azo dye (RR198) | MgO nanocrystal | k = 0.63 min−1 | 100% decolorization (9 min) | [37] |
Pesticide manufacturing plant wastewater (PMPW) | nano-MgO/CNT/Graphite | k = 0.021 min−1 (COD) k = 0.012 min−1 (TOC) | 72.41% COD removal (60 min) 51.07% TOC removal (60 min) | [38] |
Methyl Orange (MO) | Ni-based layered double hydroxides (Ni-LDHs) | k = 0.053 min−1 | 96% decolorization (60 min) | [39] |
Metoprolol (MET) and ibuprofen (IBU) | MnO2 nanocrystals (α-MnO2) | k = 0.50 min−1 (MET) k = 0.52 min−1 (IBU) | 99.62% MET removal (30 min) 99.51% IBU removal (30 min) | [40] |
Trichlorophenols (TCPs) | Ag/ZrO2 | k = 0.0325 min−1 | 100% TCPs degradation (120 min) | [41] |
Phenol | Ag/ZnO | k = 0.07 min−1 | 100% phenol removal (60 min) | [42] |
Acid Orange 10 (AO-10) | Au-Bi2O3 | k = 7.82 × 10−3 s−1 | [43] |
Target Pollutants | Catalysts | Rate Constants | Degradation Rate | Reference |
---|---|---|---|---|
Oxalic acid | N-doped reduced graphene oxide materials (rGOT-H-N) | k = 9.87 × 10−3 min−1 | 96% degradation (15 min) | [67] |
Ciprofloxacin (CF) | Carbon nanotube-supported manganese oxides (MnOx/MWCNT) | 87.5% CF degradation (15 min) | [68] | |
Atrazine (ATZ) | Multiwalled carbon nanotubes (MWCNTs) | k = 0.143 min−1 | 75% p-HBA removal (1.5 h) | [69] |
p-hydroxybenzoic acid (p-HBA) | Fe3O4/multi-walled carbon nanotubes (Fe3O4/MWCNTs) | 100% p-HBA removal (10 min) | [70] | |
p-nitrophenol (PNP) | Metal nitrogen-doped carbon materials (Fe/D-NC) | k = 0.077 min−1 | 90.1% PNP degradation (30 min) | [71] |
Methyl Orange (MO) Orange II sodium salt (O-II) Reactive Black 5 (RB-5) Remazol Brilliant Blue R (RBB-R) Real textile effluent | Copper (II) doped carbon dot (Cu-CD) | k = 1.184 min−1 (MO) k = 1.002 min−1 (O-II) k = 0.709 min−1 (RB-5) k = 0.230 min−1 (RBB-R) k = 0.012 min−1 (effluent) | 99.8% MO decolorization (6 min) 99.3% O-II decolorization (6 min) 80.1% RB-5 decolorization (6 min) 99.1% RBB-R decolorization (30 min) 41.0% effluent decolorization (60 min) | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, R.M.F.; Esteves da Silva, J.C.G.; Pinto da Silva, L. Application of Engineered Nanomaterials as Nanocatalysts in Catalytic Ozonation: A Review. Materials 2024, 17, 3185. https://doi.org/10.3390/ma17133185
Cardoso RMF, Esteves da Silva JCG, Pinto da Silva L. Application of Engineered Nanomaterials as Nanocatalysts in Catalytic Ozonation: A Review. Materials. 2024; 17(13):3185. https://doi.org/10.3390/ma17133185
Chicago/Turabian StyleCardoso, Rita M. F., Joaquim C. G. Esteves da Silva, and Luís Pinto da Silva. 2024. "Application of Engineered Nanomaterials as Nanocatalysts in Catalytic Ozonation: A Review" Materials 17, no. 13: 3185. https://doi.org/10.3390/ma17133185
APA StyleCardoso, R. M. F., Esteves da Silva, J. C. G., & Pinto da Silva, L. (2024). Application of Engineered Nanomaterials as Nanocatalysts in Catalytic Ozonation: A Review. Materials, 17(13), 3185. https://doi.org/10.3390/ma17133185