Austenite Growth Behavior and Prediction Modeling of Ti Microalloyed Steel
Abstract
:1. Introduction
2. Modeling
2.1. Precipitation Model
2.2. Austenite Growth Model
3. Material and Method
4. Result
4.1. Original Microstructure
4.2. Austenite Grain after Austenization
4.3. Precipitation Analysis
5. Verification of Model and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- An, J.Z.; Cai, Z.Z.; Zhu, M.Y. Effect of titanium content on the refinement of coarse columnar austenite grains during the solidification of peritectic steel. Int. J. Min. Met. Mater. 2022, 29, 2172–2180. [Google Scholar] [CrossRef]
- Shi, M.H.; Hou, L.; Yin, C.K.; Wang, H.Q. Effect of Austenite Grain Size on Phase Transformation Structure of Low-Carbon Microalloyed Steel. Steel Res. Int. 2024, 95, 12–25. [Google Scholar] [CrossRef]
- Li, Z.D.; Zhang, K.; Wang, W.T.; Wang, X.; Cao, Y.G.; Yong, Q.L. Mechanical properties and precipitation behaviors of a low-Mo Nb–V–Ti complex microalloyed fire-resistant steel with two kinds of microstructure. Steel Res. Int. 2021, 93, 15–29. [Google Scholar] [CrossRef]
- Zhou, X.G.; Li, H.; Chen, Q.Y.; Liu, Z.Y. Controlled Rolling of X80 Pipeline Steel in the Austenite Recrystallization Temperature Region and Its Effect on the Microstructure and Mechanical properties. Steel Res. Int. 2022, 93, 2100331. [Google Scholar] [CrossRef]
- Dikic, S.; Glisic, D.; Fadel, A.; Jovanovic, G.; Radovic, N. Structure and strength of isothermally heat-treated medium carbon Ti-V microalloyed steel. Metals 2021, 11, 1011. [Google Scholar] [CrossRef]
- Ji, G.; Gao, X.H.; Liu, Z.G.; Zhang, K. In situ observation and modeling of austenite grain growth in a Nb–Ti-bearing high carbon steel. J. Iron Steel Res. Int. 2019, 26, 292–300. [Google Scholar] [CrossRef]
- Laub, M.; Motz, C.; Bachmann, B.-I. Determination of grain size distribution of prior austenite grains through a combination of a modified contrasting method and machine learning. Pract. Metallogr. 2022, 60, 4–36. [Google Scholar] [CrossRef]
- Militzer, M.; Hawbolt, E.B.; Meadowcroft, T.R.; Giumelli, A. Austenite grain growth kinetics in Al-killed plain carbon steels. Metall. Mater. Trans. A 1996, 27, 3399–3409. [Google Scholar] [CrossRef]
- Andersen, I.; Grong, Ø.; Ryum, N. Analytical modelling of grain growth in metals and alloys in the presence of growing and dissolving precipitates—I: Normal grain growth. Acta Metall. Mater. 1995, 43, 2673–2688. [Google Scholar] [CrossRef]
- Banerjee, K.; Militzer, M.; Perez, M.; Wang, X. Nonisothermal austenite grain growth kinetics in a microalloyed X80 linepipe steel. Metall. Mater. Trans. A 2010, 41, 3161–3172. [Google Scholar] [CrossRef]
- Tang, P.; Zhang, H.; Long, M.; Chen, D.F. A Prediction Model for Continuous Growth of Austenite Grains in Steel Casting Blank: Considering Complex Temperature Variation. Metal. Mater. Trans. B 2024, 55, 195–203. [Google Scholar] [CrossRef]
- Dong, D.Q.; Chen, F.; Cui, Z.S. Modeling of Austenite Grain Growth During Austenitization in a Low Alloy Steel. J. Mater. Eng. Perform. 2016, 25, 152–164. [Google Scholar] [CrossRef]
- Beck, P.A.; Holzworth, M.L.; Hu, H. Instantaneous Rates of Grain Growth. Phys. Rev. 1948, 73, 526. [Google Scholar] [CrossRef]
- Lei, X.W.; Li, D.Y.; Zhang, X.H.; Liang, T.X. Effect of solid solution elements on solubility products of carbides and nitrides in austenite: Thermodynamic calculations. Metall. Mater. Trans. A 2019, 50, 4445–4461. [Google Scholar] [CrossRef]
- Ressel, G.; Pörnbacher, J.; Leitner, H.; Marsoner, S. Interface Modification as a Function of TiC Particle Size in a Solid-State Consolidated TiC–Steel Metal–Matrix Composite. Steel Res. Int. 2023, 21, 2200454. [Google Scholar] [CrossRef]
- Inoue, K.; Ohnuma, I.; Ohtani, H.; Ishida, K.; Nishizawa, T. Solubility Product of TiN in Austenite. ISIJ Int. 1998, 38, 991–997. [Google Scholar] [CrossRef]
- Moll, S.H.; Ogilvie, R.E. Solubility and diffusion of titanium in iron. Trans. Iron Steel Soc. AIME. 1959, 215, 613–622. [Google Scholar]
- Xu, C.; Dai, W.J.; Chen, Y.; Qi, Z.X.; Zheng, G.; Cao, Y.D.; Zhang, J.P.; Bu, C.; Chen, G. Control of dislocation density maximizing precipitation strengthening effect. J. Mater. Sci. Technol. 2022, 127, 133–143. [Google Scholar] [CrossRef]
- Dong, Y.H.; Zhang, D.; Li, D.G.; Jia, H.; Qin, W.P. Control of Ostwald ripening. Sci. China Mater. 2023, 66, 1249–1255. [Google Scholar] [CrossRef]
- Michalak, N.; Ossowski, T.; Miosz, Z.; Prieto, M.J.; Wang, Y.; Werwiński, M.; Babacic, V.; Genuzio, F.; Vattuone, L.; Kiejna, A.; et al. Ostwald ripening in an oxide-on-metal system. Adv. Mater. Int. 2021, 9, 2200222. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Fan, S.T.; Lian, X.Z.; Min, N. Effect of Precipitated Particles on Austenite Grain Growth of Al- and Nb-Microalloyed 20MnCr Gear Steel. Metals 2024, 14, 469. [Google Scholar] [CrossRef]
- Zener, C. Grains phases and interfaces: An interpretation of microstructure. Trans. Iron Steel Soc. AIME. 1948, 175, 15–51. [Google Scholar]
- Ohnuma, I.; Ishida, K.; Nishizawa, T. Grain Growth of Particle-Dispersed Structure and Dual-Phase Structure. Recrystallization and Related Phenomena; Department of Materials Science, Graduate School of Engineering Tohoku University: Sendai, Japan, 1999; pp. 463–476. [Google Scholar]
- Gladman, T. On the Theory of the Effect of Precipitate Particles on Grain Growth in Metals. Proc. R. Soc. Lond. London 1966, 294, 298–308. [Google Scholar]
- Srolovitz, D.J.; Anderson, M.P.; Grest, G.S.; Sahni, P.S. Computer simulation of grain growth-III: Influence of a particle dispersion. Acta Metall. 1984, 32, 1429–1438. [Google Scholar] [CrossRef]
- Zhang, X.G.; Miyamoto, G.; Furuhara, T.S. Effects of heating rate on microstructure of reverted austenite. Iron Steel 2019, 54, 83–91. [Google Scholar]
- Yong, Q.L.; Liu, Z.D.; Sun, X.J. Theoretical calculation for equilibrium solubilities and compositional coefficient of titanium carbonitrides in ti-bearing micrioalloyed steel. Iron Steel Vanadium Titan 2005, 26, 12–19. [Google Scholar]
- Cao, L.; Wang, G.C.; Xiao, Y.Y.; Yang, R.G. Effect of Mg addition on TiN inclusions in GCr15 bearing steel. J. Iron Steel Res. Int. 2022, 29, 925–938. [Google Scholar] [CrossRef]
- Meng, F.; Wang, J.; Guo, J.; Fu, K.J.; Zhao, M.; Wang, Z.J.; Xu, Z. Growth behavior and kinetics of austenite grain in low-carbon high-strength steel with copper. Mater. Res. Express. 2021, 8, 096504. [Google Scholar] [CrossRef]
- Fu, D.C.; Wen, G.H.; Zhu, X.Q.; Guo, J.L.; Tang, P. Modification for prediction model of austenite grain size at surface of microalloyed steel slabs based on in situ observation. J. Iron Steel Res. Int. 2021, 28, 1133–1140. [Google Scholar] [CrossRef]
- Yue, C.X.; Zhang, L.W.; Liao, S.L.; Gao, H.J. Mathematical models for predicting the austenite grain size in hot working of GCr15 steel. Comput. Mater. Sci. 2009, 45, 462–466. [Google Scholar] [CrossRef]
- Annan, K.A.; Siyasiya, C.W.; Stumpf, W.E. Austenite Grain Growth Kinetics after Isothermal Deformation in Microalloyed Steels with Varying Nb Concentrations. ISIJ Inter. 2018, 58, 333–339. [Google Scholar] [CrossRef]
Literature | k | n |
---|---|---|
Zener-Smith [22] | 4/3 | 1 |
Gladman [24] | π/6(1.5–2/Z), ≤ Z ≤ 2 | 1 |
Srolovitz-Anderson [25] | 4/9 | 1/2 |
Nishizawa [23] | 4/3, 8/3 | 2/3 |
T(°C) | 1 min | 15 min | 30 min | 60 min | 120 min | |||||
---|---|---|---|---|---|---|---|---|---|---|
Grain Size(μm) | Standard Deviation | Grain Size (μm) | Standard Deviation | Grain Size (μm) | Standard Deviation | Grain Size (μm) | Standard Deviation | Grain Size (μm) | Standard Deviation | |
950 | 8.8 | 0.52 | 9.8 | 0.53 | 11.2 | 0.52 | 12.1 | 0.47 | 13.0 | 0.49 |
1000 | 11.3 | 0.55 | 12.1 | 0.51 | 13.5 | 0.42 | 15.9 | 0.49 | 16.1 | 0.50 |
1100 | 30.8 | 0.56 | 33.5 | 0.47 | 39.5 | 0.43 | 48.6 | 0.44 | 49.8 | 0.50 |
1200 | 86.1 | 0.48 | 104.1 | 0.43 | 123.6 | 0.54 | 141.9 | 0.55 | 142.4 | 0.59 |
1300 | 168.5 | 0.60 | 171.5 | 0.57 | 205.6 | 0.57 | 233.5 | 0.59 | 234.1 | 0.62 |
T (°C) | 1 min | 120 min | ||
---|---|---|---|---|
Precipitate Size (nm) | Standard Deviation | Precipitate Size (nm) | Standard Deviation | |
950 | 18.2 | 0.42 | 38.3 | 0.61 |
1000 | 23.3 | 0.56 | 84.5 | 0.59 |
1100 | 34.8 | 0.59 | 198 | 0.55 |
1200 | 268 | 0.51 | 479 | 0.54 |
1300 | 1145 | 0.60 | 1862 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, M.; Wang, L.; He, P.; Hu, H.; Xu, G. Austenite Growth Behavior and Prediction Modeling of Ti Microalloyed Steel. Materials 2024, 17, 3236. https://doi.org/10.3390/ma17133236
Wang J, Liu M, Wang L, He P, Hu H, Xu G. Austenite Growth Behavior and Prediction Modeling of Ti Microalloyed Steel. Materials. 2024; 17(13):3236. https://doi.org/10.3390/ma17133236
Chicago/Turabian StyleWang, Jun, Man Liu, Lifan Wang, Ping He, Haijiang Hu, and Guang Xu. 2024. "Austenite Growth Behavior and Prediction Modeling of Ti Microalloyed Steel" Materials 17, no. 13: 3236. https://doi.org/10.3390/ma17133236
APA StyleWang, J., Liu, M., Wang, L., He, P., Hu, H., & Xu, G. (2024). Austenite Growth Behavior and Prediction Modeling of Ti Microalloyed Steel. Materials, 17(13), 3236. https://doi.org/10.3390/ma17133236