Structural Colored Fabric Based on Monodisperse Cu2O Microspheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cu2O Microsphere
2.3. Preparation of Structural Color Ink
2.4. Requirement of Cu2O Microsphere
2.5. Characterization Methods
2.6. Storage Stability of Cu2O Microsphere Dispersion
2.7. Characterization of Structural Color and Its Color Fastness
3. Results and Discussion
3.1. Morphology of Cu2O Microsphere
3.2. Analysis of Monodispersity of Cu2O Microsphere
3.3. Microstructure of Cu2O Microsphere
3.4. XRD of Cu2O Microsphere
3.5. Zeta Potential Analysis of Cu2O Microsphere Dispersion
3.6. Effect of Concentration of Cu2O Microsphere on Structural Color
3.7. Effect of Concentration of Adhesive on Structural Color
3.8. Effect of Size of Cu2O Microsphere on Structural Color
3.9. Stability of Photonic Crystal
3.9.1. Bending Test
3.9.2. Friction Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shawkey, M.D.; D’Alba, L. Interactions between color-producing mechanisms and their effects on the integumentary colour palette. Philos. Trans. B 2017, 372, 1–9. [Google Scholar] [CrossRef]
- Zhu, K.; Fang, C.; Pu, M.; Song, J.; Wang, D.; Zhou, X. Recent advances in photonic crystal with unique structural colors: A review. J. Mater. Sci. Technol. 2023, 141, 78–99. [Google Scholar] [CrossRef]
- Cuthill, I.C.; Allen, W.L.; Arbuckle, K.; Caspers, B.; Chaplin, G.; Hauber, M.E.; Hill, G.E.; Jablonski, N.G.; Jiggins, C.D.; Kelber, A.; et al. The Biology of Color. Science 2017, 357, eaan0221. [Google Scholar] [CrossRef]
- Kinoshita, S.; Yoshioka, S. Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure. ChemPhysChem 2005, 6, 1442–1459. [Google Scholar] [CrossRef]
- Kinoshita, S.; Yoshioka, S.; Miyazaki, J. Physics of structural colors. Rep. Prog. Phys. 2008, 71, 076401. [Google Scholar] [CrossRef]
- Parker, A.R. 515 million years of structural colour. J. Opt. A Pure Appl. Opt. 2000, 2, R15–R28. [Google Scholar] [CrossRef]
- Yoshioka, S.; Shimizu, Y.; Kinoshita, S.; Matsuhana, B. Structural color of a lycaenid butterfly: Analysis of an aperiodic multilayer structure. Bioinspir. Biomim. 2013, 8, 045001. [Google Scholar] [CrossRef]
- Teyssier, J.; Saenko, S.V.; van der Marel, D.; Milinkovitch, M.C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368. [Google Scholar] [CrossRef]
- Meng, Y.; Tang, B.; Ju, B.; Wu, S.; Zhang, S. Multiple Colors Output on Voile through 3D Colloidal Crystals with Robust Mechanical Properties. ACS Appl. Mater. Interfaces 2017, 9, 3024–3029. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Zhao, Q.; Liu, G.; Chai, L.; Zhou, L.; Fan, Q.; Shao, J. High Structural Stability of Photonic Crystals on Textile Substrates, Prepared via a Surface-Supported Curing Strategy. ACS Appl. Mater. Interfaces 2021, 13, 19221–19229. [Google Scholar] [CrossRef]
- Zhou, L.; Li, Y.; Liu, G.; Fan, Q.; Shao, J. Study on the correlations between the structural colors of photonic crystals and the base colors of textile fabric substrates. Dye. Pigment. 2016, 133, 435–444. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, L.; Zhang, G.; Li, Y.; Chai, L.; Fan, Q.; Shao, J. Fabrication of patterned photonic crystals with brilliant structural colors on fabric substrates using ink-jet printing technology. Mater. Des. 2017, 114, 10–17. [Google Scholar] [CrossRef]
- Khan, M.R.; Kim, H.G.; Park, J.S.; Shin, J.W.; Nguyen, C.T.; Lee, H.B.R. Tunable Color Coating of E-Textiles by Atomic Layer Deposition of Multilayer TiO2/Al2O3 Films. Langmuir 2020, 36, 2794–2801. [Google Scholar] [CrossRef]
- Zhou, C.; Qi, Y.; Zhang, S.; Niu, W.; Ma, W.; Wu, S.; Tang, B. Rapid fabrication of vivid noniridescent structural colors on fabrics with robust structural stability by screen printing. Dye. Pigment. 2020, 176, 108226. [Google Scholar] [CrossRef]
- Li, Y.; Chai, L.; Wang, X.; Zhou, L.; Fan, Q.; Shao, J. Facile Fabrication of Amorphous Photonic Structures with Non-Iridescent and Highly-Stable Structural Color on Textile Substrates. Materials 2018, 11, 2500. [Google Scholar] [CrossRef]
- Shi, X.; He, J.; Wu, L.; Chen, S.; Lu, X. Rapid fabrication of robust and bright colloidal amorphous arrays on textiles. J. Coat. Technol. Res. 2020, 17, 1033–1042. [Google Scholar] [CrossRef]
- Zeng, Q.; Ding, C.; Li, Q.; Yuan, W.; Peng, Y.; Hu, J.; Zhang, K.-Q. Rapid fabrication of robust, washable, self-healing superhydrophobic fabrics with non-iridescent structural color by facile spray coating. RSC Adv. 2017, 7, 8443–8452. [Google Scholar] [CrossRef]
- von Freymann, G.; Kitaev, V.; Lotsch, B.V.; Ozin, G.A. Bottom-up assembly of photonic. Chem. Soc. Rev. 2013, 42, 2528–2554. [Google Scholar] [CrossRef]
- Galisteo-López, J.F.; Ibisate, M.; Sapienza, R.; Froufe-Pérez, L.S.; Blanco, Á.; López, C. Self-assembled photonic structures. Adv. Mater. 2011, 23, 30–69. [Google Scholar] [CrossRef]
- Ma, W.; Xiang, J.; Zhang, J.; Li, Y.; Luan, Y.; Zhao, Y.; Chai, L.; Zhu, G.; Zhou, L.; Shao, J.; et al. Preparation and formation mechanism of colorful photonic crystals on rough yarns. Prog. Org. Coatings 2024, 186, 108029. [Google Scholar] [CrossRef]
- Liu, G.; Han, P.; Wu, Y.; Li, H.; Zhou, L. The preparation of monodisperse P(St-BA-MAA)@disperse dye microspheres and fabrication of patterned photonic crystals with brilliant structural colors on white substrates. Opt. Mater. 2019, 98, 109503. [Google Scholar] [CrossRef]
- Han, M.G.; Shin, C.G.; Jeon, S.J.; Shim, H.; Heo, C.J.; Jin, H.; Kim, J.W.; Lee, S. Full Color Tunable Photonic Crystal from Crystalline Colloidal Arrays with an Engineered Photonic Stop–Band. Adv. Mater. 2012, 24, 6438–6444. [Google Scholar] [CrossRef]
- Bi, J.; Wu, S.; Xia, H.; Li, L.; Zhang, S. Synthesis of monodisperse single-crystal Cu2O spheres and their application in generating structural colors. J. Mater. Chem. C 2019, 7, 4551–4558. [Google Scholar] [CrossRef]
- Bi, J.; Wu, Y.; Li, L.; Zhang, S.; Wu, S. Asymmetric structural colors based on monodisperse single-crystal Cu2O spheres. Nanoscale 2019, 12, 3220–3226. [Google Scholar] [CrossRef]
- Han, Y.; Meng, Z.; Wu, Y.; Zhang, S.; Wu, S. Structural Colored Fabrics with Brilliant Colors, Low Angle Dependence, and High Color Fastness Based on the Mie Scattering of CuO Spheres. ACS Appl. Mater. Interfaces 2021, 13, 57796–57802. [Google Scholar] [CrossRef]
- Sarwar, N.; Kumar, M.; Humayoun, U.B.; Dastgeer, G.; Nawaz, A.; Yoon, D. Nano coloration and functionalization of cellulose drive through in-situ synthesis of cross-linkable Cu2O nano-cubes: A green synthesis route for sustainable clothing system. Mater. Sci. Eng. B 2023, 289, 116284. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, L.; Zhang, Y.; Chen, Y.; Liu, X. Construction of Cu2O single crystal nanospheres coating with brilliant structural color and excellent antibacterial properties. Opt. Mater. 2023, 138, 113724. [Google Scholar] [CrossRef]
- Gong, L.; Qiu, Y.; Nan, F.; Hao, Z.; Zhou, L.; Wang, Q. Synthesis and Largely Enhanced Nonlinear Refraction of Au@Cu2O Core-Shell Nanorods. Wuhan Univ. J. Nat. Sci. 2018, 23, 418–423. [Google Scholar] [CrossRef]
- Bartolucci, S.F.; Leff, A.C.; Maurer, J.A. Gold–copper oxide core–shell plasmonic nanoparticles: The effect of pH on shell stability and mechanistic insights into shell formation. Nanoscale Adv. 2024, 6, 2499–2507. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhou, L.; Wu, Y.; Wang, C.; Fan, Q.; Shao, J. Optical properties of three-dimensional P(St-MAA) photonic crystals on polyester fabrics. Opt. Mater. 2015, 42, 72–79. [Google Scholar] [CrossRef]
- ISO 105-X12:2016; Textiles—Tests for Colour Fastness Part X12: Colour Fastness to Rubbing. International Organization for Standardization: Geneva, Switzerland, 2016.
- Kyzioł, A.; Łukasiewicz, S.; Sebastian, V.; Kuśtrowski, P.; Kozieł, M.; Majda, D.; Cierniak, A. Towards plant-mediated chemistry—Au nanoparticles obtained using aqueous extract of Rosa damascena and their biological activity in vitro. J. Inorg. Biochem. 2020, 214, 111300. [Google Scholar] [CrossRef] [PubMed]
- Montes, C.; Villaseñor, M.J.; Ríos, A. Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. Trends Food Sci. Technol. 2019, 90, 47–62. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, L.; Liu, G.; Chai, L.; Fan, Q.; Shao, J. Study on the fabrication of composite photonic crystals with high structural stability by co-sedimentation self-assembly on fabric substrates. Appl. Surf. Sci. 2018, 444, 145–153. [Google Scholar] [CrossRef]
- Ge, J.; Yin, Y. Responsive Photonic Crystals. Angew. Chem. Int. Ed. 2011, 50, 1492–1522. [Google Scholar] [CrossRef] [PubMed]
Sample | Diameter of Cu2O Microsphere (nm) | Zeta Potential (mV) |
---|---|---|
Cu2O microsphere dispersions | 275 | −31.24 |
240 | −32.34 | |
210 | −30.85 | |
190 | −33.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yin, Z.; She, Z.; Wang, Y.; Khabibulla, P.; Kayumov, J.; Liu, G.; Zhou, L.; Zhu, G. Structural Colored Fabric Based on Monodisperse Cu2O Microspheres. Materials 2024, 17, 3238. https://doi.org/10.3390/ma17133238
Li X, Yin Z, She Z, Wang Y, Khabibulla P, Kayumov J, Liu G, Zhou L, Zhu G. Structural Colored Fabric Based on Monodisperse Cu2O Microspheres. Materials. 2024; 17(13):3238. https://doi.org/10.3390/ma17133238
Chicago/Turabian StyleLi, Xiaowen, Zhen Yin, Zhanghan She, Yan Wang, Parpiev Khabibulla, Juramirza Kayumov, Guojin Liu, Lan Zhou, and Guocheng Zhu. 2024. "Structural Colored Fabric Based on Monodisperse Cu2O Microspheres" Materials 17, no. 13: 3238. https://doi.org/10.3390/ma17133238
APA StyleLi, X., Yin, Z., She, Z., Wang, Y., Khabibulla, P., Kayumov, J., Liu, G., Zhou, L., & Zhu, G. (2024). Structural Colored Fabric Based on Monodisperse Cu2O Microspheres. Materials, 17(13), 3238. https://doi.org/10.3390/ma17133238