Differentiation between Hydrolytic and Thermo-Oxidative Degradation of Poly(lactic acid) and Poly(lactic acid)/Starch Composites in Warm and Humid Environments
Abstract
:1. Introduction
2. Aging Mechanisms of PLA
3. Materials and Methods
3.1. PLA and Potato Starch
3.2. Preparation of the Composites and Samples
3.3. Ageing in Warm and Humid Environments
3.4. Tensile Test
3.5. Gel Permeation Chromatography (GPC)
3.6. Thermogravimetric Analysis (TGA)
3.7. Fourier Transformation IR Spectroscopy (FTIR)
3.8. NMR Spectroscopy
4. Results
4.1. Influence of Warm and Humid Environment on Mechanical Properties of PLA and PLA–Starch Composites
4.2. Influence of Warm and Humid Environment on the Degradation of PLA and PLA–Starch Composites (GPC)
4.3. Thermal Stability of PLA and PLA–Starch Composites (TGA)
4.4. Investigation of Structural Changes in PLA and PLA–Starch Composites by Hydrolysis and Thermo-Oxidative Degradation Using FTIR
4.5. Differentiation between Hydrolytic and Thermo-Oxidative Degradation of PLA Using NMR Spectroscopy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IfBB—Institute for Bioplstics and Biocomposites. Biopolymers—Facts and Statistics 2021: Production Capacities, Processing Routes, Feedstock, Land Water Use; IfBB—Institute for Bioplstics and Biocomposites: Hannover, Germany, 2021; ISSN 2510-3431. Available online: https://www.researchgate.net/publication/356987907_Biopolymers_facts_and_statistics_2021 (accessed on 30 June 2024).
- Elsawy, M.A.; Kim, K.-H.; Park, J.-W.; Deep, A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sustain. Energy Rev. 2017, 79, 1346–1352. [Google Scholar] [CrossRef]
- Gorrasi, G.; Pantani, R. Hydrolysis and Biodegradation of Poly(lactic acid). In Synthesis, Structure and Properties of Poly(lactic acid); Di Lorenzo, M.L., Androsch, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 119–151. ISBN 978-3-319-64229-1. [Google Scholar]
- Karst, D.; Yang, Y. Molecular modeling study of the resistance of PLA to hydrolysis based on the blending of PLLA and PDLA. Polymer 2006, 47, 4845–4850. [Google Scholar] [CrossRef]
- Porfyris, A.; Vasilakos, S.; Zotiadis, C.; Papaspyrides, C.; Moser, K.; van der Schueren, L.; Buyle, G.; Pavlidou, S.; Vouyiouka, S. Accelerated ageing and hydrolytic stabilization of poly(lactic acid) (PLA) under humidity and temperature conditioning. Polym. Test. 2018, 68, 315–332. [Google Scholar] [CrossRef]
- Shi, M.; Jiao, Q.; Yin, T.; Vlassak, J.J.; Suo, Z. Hydrolysis embrittles poly(lactic acid). MRS Bull. 2023, 48, 45–55. [Google Scholar] [CrossRef]
- Zaaba, N.F.; Jaafar, M. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 2020, 60, 2061–2075. [Google Scholar] [CrossRef]
- Tsuji, H. In vitro hydrolysis of blends from enantiomeric poly(lactide)s Part 1. Well-stereo-complexed blend and non-blended films. Polymer 2000, 41, 3621–3630. [Google Scholar] [CrossRef]
- Speranza, V.; de Meo, A.; Pantani, R. Thermal and hydrolytic degradation kinetics of PLA in the molten state. Polym. Degrad. Stab. 2014, 100, 37–41. [Google Scholar] [CrossRef]
- Tsuji, H.; Ikarashi, K. In vitro hydrolysis of poly(l-lactide) crystalline residues as extended-chain crystallites III. Effects of pH and enzyme. Polym. Degrad. Stab. 2004, 85, 647–656. [Google Scholar] [CrossRef]
- Tsuji, H.; Ikarashi, K. In vitro hydrolysis of poly(L-lactide) crystalline residues as extended-chain crystallites. Part I: Long-term hydrolysis in phosphate-buffered solution at 37 degrees C. Biomaterials 2004, 25, 5449–5455. [Google Scholar] [CrossRef]
- Tsuji, H.; Ikarashi, K. In vitro hydrolysis of poly(l-lactide) crystalline residues as extended-chain crystallites: II. Effects of hydrolysis temperature. Biomacromolecules 2004, 5, 1021–1028. [Google Scholar] [CrossRef]
- Tsuji, H.; Miyauchi, S. Poly (l-lactide): 7. Enzymatic hydrolysis of free and restricted amorphous regions in poly (l-lactide) films with different crystallinities and a fixed crystalline. Polymer 2001, 42, 4463–4467. [Google Scholar] [CrossRef]
- Tsuji, H.; Miyauchi, S. Poly(l-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polym. Degrad. Stab. 2001, 71, 415–424. [Google Scholar] [CrossRef]
- Tsuji, H.; Mizuno, A.; Ikada, Y. Properties and morphology of poly (L-lactide). 3. Effects of crystallinity on long-term in vitro hydrolysis of poly (L-lactide) film in phosphate-buffered solution. J. Appl. Polym. Sci. 2000, 77, 1452–1464. [Google Scholar] [CrossRef]
- Tsuji, H.; Nakahara, K.; Ikarashi, K. Poly(L-Lactide), 8. High-Temperature Hydrolysis of Poly(L-Lactide) Films with Different Crystallinities and Crystalline Thicknesses in Phosphate-Buffered Solution. Macromol. Mater. Eng. 2001, 286, 398–406. [Google Scholar] [CrossRef]
- Aouat, T.; Kaci, M.; Lopez-Cuesta, J.-M.; Devaux, E. Investigation on the Durability of PLA Bionanocomposite Fibers under Hygrothermal Conditions. Front. Mater. 2019, 6, 323. [Google Scholar] [CrossRef]
- Kopinke, F.-D.; Remmler, M.; Mackenzie, K.; Möder, M.; Wachsen, O. Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid). Polym. Degrad. Stab. 1996, 53, 329–342. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, Y.; Tan, H. Thermal and thermo-oxidative degradation kinetics and characteristics of poly (lactic acid) and its composites. Waste Manag. 2019, 87, 335–344. [Google Scholar] [CrossRef]
- Lv, S.; Gu, J.; Tan, H.; Zhang, Y. Enhanced durability of sustainable poly (lactic acid)-based composites with renewable starch and wood flour. J. Clean. Prod. 2018, 203, 328–339. [Google Scholar] [CrossRef]
- Laredo, E.; Newman, D.; Pezzoli, R.; Müller, A.J.; Bello, A. A complete TSDC description of molecular mobilities in polylactide/starch blends from local to normal modes: Effect of composition, moisture, and crystallinity. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 680–691. [Google Scholar] [CrossRef]
- Ke, T.; Sun, X. Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. J. Appl. Polym. Sci. 2003, 89, 1203–1210. [Google Scholar] [CrossRef]
- Goetjes, V.; Zarges, J.-C.; Heim, H.-P. Resistance of poly(lactic acid)/starch composites to weathering effects. J. Appl. Polym. Sci. 2024, 141, e54768. [Google Scholar] [CrossRef]
- Heim, H.-P. (Ed.) Specialized Injection Molding Techniques; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780323341004. [Google Scholar]
- Fuchs, J. Blends aus Stärke und PLA; Kassel University Press: Kassel, Germany, 2018. [Google Scholar]
- Ke, T.; Sun, X. Physical Properties of Poly(Lactic Acid) and Starch Composites with Various Blending Ratios. Cereal Chem. J. 2000, 77, 761–768. [Google Scholar] [CrossRef]
- Kovács, J.G.; Tábi, T. Examination of starch preprocess drying and water absorption of injection-molded starch-filled poly(lactic acid) products. Polym. Eng. Sci. 2011, 51, 843–850. [Google Scholar] [CrossRef]
- Ju, X.; Grego, C.; Zhang, X. Specific effects of fiber size and fiber swelling on biomass substrate surface area and enzymatic digestibility. Bioresour. Technol. 2013, 144, 232–239. [Google Scholar] [CrossRef]
- Chaudemanche, C.; Navard, P. Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers. Cellulose 2011, 18, 1–15. [Google Scholar] [CrossRef]
- Eriksson, I.; Haglind, I.; Lidbrandt, O.; Salmén, L. Fiber swelling favoured by lignin softening. Wood Sci. Technol. 1991, 25, 135–144. [Google Scholar] [CrossRef]
- Mantanis, G.I.; Young, R.A.; Rowell, R.M. Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 1995, 2, 1–22. [Google Scholar] [CrossRef]
- Mishra, S.; Naik, J.B.; Patil, Y.P. The compatibilising effect of maleic anhydride on swelling and machanical properties of plant-fiber-reinforced novolac composites. Compos. Sci. Technol. 2000, 60, 1729–1735. [Google Scholar] [CrossRef]
- Falkenreck, C.K.; Gemmeke, N.; Zarges, J.-C.; Heim, H.-P. Influence of Accelerated Aging on the Fiber-Matrix Adhesion of Regenerated Cellulose Fiber-Reinforced Bio-Polyamide. Polymers 2023, 15, 1606. [Google Scholar] [CrossRef]
- Ceretti, D.V.A.; Edeleva, M.; Cardon, L.; D’hooge, D.R. Molecular Pathways for Polymer Degradation during Conventional Processing, Additive Manufacturing, and Mechanical Recycling. Molecules 2023, 28, 2344. [Google Scholar] [CrossRef]
- Jiang, N.; Yu, T.; Li, Y. Effect of Hydrothermal Aging on Injection Molded Short Jute Fiber Reinforced Poly(Lactic Acid) (PLA) Composites. J. Polym. Environ. 2018, 26, 3176–3186. [Google Scholar] [CrossRef]
- Çelikkol, Ö.; Şahin, E.; Yildiz, N.; Bayraktar, E. The Effect of Acetylation on the Hydrolytic Degradation of PLA/Clay Nanocomposites. J. Polym. Environ. 2018, 26, 4131–4140. [Google Scholar] [CrossRef]
- Gonzalez, M.F.; Ruseckaite, R.A.; Cuadrado, T.R. Structural changes of polylactic-acid (PLA) microspheres under hydrolytic degradation. J. Appl. Polym. Sci. 1999, 71, 1223–1230. [Google Scholar] [CrossRef]
- Gorrasi, G.; Pantani, R. Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: Assessment of structural modification and kinetic parameters. Polym. Degrad. Stab. 2013, 98, 1006–1014. [Google Scholar] [CrossRef]
- Gijsman, P. Polymer Stabilization. In Applied Plastics Engineering Handbook; Elsevier: Amsterdam, The Netherlands, 2017; pp. 395–421. ISBN 9780323390408. [Google Scholar]
- Amorin, N.S.Q.S.; Rosa, G.; Alves, J.F.; Gonçalves, S.P.C.; Franchetti, S.M.M.; Fechine, G.J.M. Study of thermodegradation and thermostabilization of poly(lactide acid) using subsequent extrusion cycles. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Gardette, M.; Thérias, S.; Gardette, J.-L.; Murariu, M.; Dubois, P. Photooxidation of polylactide/calcium sulphate composites. Polym. Degrad. Stab. 2011, 96, 616–623. [Google Scholar] [CrossRef]
- McNeill, I.C.; Leiper, H.A. Degradation studies of some polyesters and polycarbonates—2. Polylactide: Degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polym. Degrad. Stab. 1985, 11, 309–326. [Google Scholar] [CrossRef]
- Total Energies Corbion. Product Data Sheet Luminy® L130; Total Energies Corbion: Gorinchem, The Netherlands, 2022. [Google Scholar]
- Emsland Stärke GmbH. Product Data Sheet Potato Starch Superior; Emsland Stärke GmbH: Emlichheim, Germany, 2004. [Google Scholar]
- DIN EN ISO 527-2; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. Beuth Verlag: Berlin, Germany, 2012.
- DIN EN ISO 291; Kunststoffe—Normalklimate für Konditionierung und Prüfung. Beuth Verlag: Berlin, Germany, 2008.
- DIN 55672-1; Gel permeation chromatography (GPC)—Part 1: Tetrahydrofuran (THF) as Elution Solvent. Beuth Verlag: Berlin, Germany, 2016.
- Srithep, Y.; Nealey, P.; Turng, L.-S. Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid). Polym. Eng. Sci. 2013, 53, 580–588. [Google Scholar] [CrossRef]
- Gáspár, M.; Benkő, Z.; Dogossy, G.; Réczey, K.; Czigány, T. Reducing water absorption in compostable starch-based plastics. Polym. Degrad. Stab. 2005, 90, 563–569. [Google Scholar] [CrossRef]
- Yew, G.H.; Mohd Yusof, A.M.; Mohd Ishak, Z.A.; Ishiaku, U.S. Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polym. Degrad. Stab. 2005, 90, 488–500. [Google Scholar] [CrossRef]
- Auras, R. (Ed.) Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications; Wiley-Blackwell: Oxford, UK, 2010; ISBN 978-0-470-29366-9. [Google Scholar]
- Tsuji, H.; Ikada, Y. Properties and morphology of poly(L-lactide). II. hydrolysis in alkaline solution. J. Polym. Sci. A Polym. Chem. 1998, 36, 59–66. [Google Scholar] [CrossRef]
- Cam, D.; Hyon, S.H.; Ikada, Y. Degradation of high molecular weight poly(L-lactide) in alkaline medium. Biomaterials 1995, 16, 833–843. [Google Scholar] [CrossRef]
- Ke, T.; Sun, S.X.; Seib, P. Blending of poly(lactic acid) and starches containing varying amylose content. J. Appl. Polym. Sci. 2003, 89, 3639–3646. [Google Scholar] [CrossRef]
- González-López, M.E.; Del Martín Campo, A.S.; Robledo-Ortíz, J.R.; Arellano, M.; Pérez-Fonseca, A.A. Accelerated weathering of poly(lactic acid) and its biocomposites: A review. Polym. Degrad. Stab. 2020, 179, 109290. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.Y.; Richardson, M. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos. Sci. Technol. 2007, 67, 1674–1683. [Google Scholar] [CrossRef]
- Acioli-Moura, R.; Sun, X.S. Thermal degradation and physical aging of poly(lactic acid) and its blends with starch. Polym. Eng. Sci. 2008, 48, 829–836. [Google Scholar] [CrossRef]
- Dintcheva, N.T.; Al-Malaika, S.; Morici, E.; Arrigo, R. Thermo-oxidative stabilization of poly(lactic acid)-based nanocomposites through the incorporation of clay with in-built antioxidant activity. J. Appl. Polym. Sci. 2017, 134, 44974. [Google Scholar] [CrossRef]
- Badia, J.D.; Santonja-Blasco, L.; Martínez-Felipe, A.; Ribes-Greus, A. Hygrothermal ageing of reprocessed polylactide. Polym. Degrad. Stab. 2012, 97, 1881–1890. [Google Scholar] [CrossRef]
- Kister, G.; Cassanas, G.; Vert, M. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 1998, 39, 267–273. [Google Scholar] [CrossRef]
- Cuadri, A.A.; Martín-Alfonso, J.E. Thermal, thermo-oxidative and thermomechanical degradation of PLA: A comparative study based on rheological, chemical and thermal properties. Polym. Degrad. Stab. 2018, 150, 37–45. [Google Scholar] [CrossRef]
- Somi, S.; Mary, Y.S.; Varghese, H.T.; Panicker, C.Y. Yohannan Panicker. Vibrational Spectroscopic Studies of Acetaldehyde Semicarbazone. Orient. J. Chem. 2010, 26, 1007–1012. [Google Scholar]
- Pelegrini, K.; Donazzolo, I.; Brambilla, V.; Coulon Grisa, A.M.; Piazza, D.; Zattera, A.J.; Brandalise, R.N. Degradation of PLA and PLA in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. J. Appl. Polym. Sci. 2016, 133, 43290. [Google Scholar] [CrossRef]
- Carrasco, F.; Pagès, P.; Gámez-Pérez, J.; Santana, O.O.; Maspoch, M.L. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 2010, 95, 116–125. [Google Scholar] [CrossRef]
- Oliveira, M.; Santos, E.; Araújo, A.; Fechine, G.J.; Machado, A.V.; Botelho, G. The role of shear and stabilizer on PLA degradation. Polym. Test. 2016, 51, 109–116. [Google Scholar] [CrossRef]
- Sabbatier, G.; Le Nouën, D.; Chevallier, P.; Durand, B.; Laroche, G.; Dieval, F. Air spun poly(lactic acid) nanofiber scaffold degradation for vascular tissue engineering: A 1H NMR study. Polym. Degrad. Stab. 2012, 97, 1520–1526. [Google Scholar] [CrossRef]
- Zhang, X.; Espiritu, M.; Bilyk, A.; Kurniawan, L. Morphological behaviour of poly(lactic acid) during hydrolytic degradation. Polym. Degrad. Stab. 2008, 93, 1964–1970. [Google Scholar] [CrossRef]
- Hoshino, A.; Tsuji, M.; Fukuda, K.; Nonagase, M.; Sawada, H.; Kimura, M. Changes in molecular structure of biodegradable plastics during degradation in soils estimated by FT-IR and NMR. Soil Sci. Plant Nutr. 2002, 48, 469–473. [Google Scholar] [CrossRef]
- Espartero, J.L.; Rashkov, I.; Li, S.M.; Manolova, N.; Vert, M. NMR Analysis of Low Molecular Weight Poly(lactic acid)s. Macromolecules 1996, 29, 3535–3539. [Google Scholar] [CrossRef]
PLA | |||||
---|---|---|---|---|---|
Temperature [°C] Humidity [%] | 23 °C | 50 °C | 70 °C | 90 °C | |
maximum elongation (%) | 10% | 2.14 ± 0.04 d,e | 2.22 ± 0.03 c,d | 2.22 ± 0.03 c,d | |
50% | 2.08 ± 0.03 e | 2.38 ± 0.03 a,b | 0.36 ± 0.13 f | ||
75% | 2.10 ± 0.02 e | 2.48 ± 0.02 a | |||
90% | 2.09 ± 0.02 e | 2.29 ± 0.09 b,c | |||
Young’s Modulus (MPa) | 10% | 3542.96 ± 83.0 c,d | 3665.19 ± 60.3 b,c | 3698.48 ± 65.7 b | |
50% | 3596.30 ± 21.2 b,c,d | 3512.54 ± 122.2 d | 3934.72 ± 66.3 a | ||
75% | 3540.14 ± 10.0 c,d | 3548.12 ± 30.6 c,d | |||
90% | 3546.43 ± 61.7 c,d | 3578.21 ± 117.7 b,c,d |
PLA with 50 wt.% Starch | |||||
---|---|---|---|---|---|
Temperature [°C] Humidity [%] | 23 °C | 50 °C | 70 °C | 90 °C | |
maximum elongation (%) | 10% | 0.87 ± 0.10 c | 1.07 ± 0.04 a | 0.94 ± 0.01 b,c | 0.49 ± 0.08 d |
50% | 0.99 ± 0.02 a,b,c | 1.01 ± 0.03 a,b | 0.90 ± 0.06 b,c | ||
75% | 0.91 ± 0.07 b,c | 0.89 ± 0.02 b,c | 0.59 ± 0.11 d | ||
90% | 0.88 ± 0.02 c | 0.90 ± 0.02 b,c | 0.27 ± 0.07 e | ||
Young’s Modulus (MPa) | 10% | 4612.26 ± 58.66 a | 4459.31 ± 53.72 a,b,c | 4389.81 ± 43.99 b,c | 4512.989 ± 212 a,b |
50% | 4339.22 ± 19.06 c | 4097.82 ± 83.53 d,e | 3948.53 ± 48.33 e,f | ||
75% | 4140.70 ± 22.19 d | 3770.14 ± 14.38 g,h | 3616.86 ± 73.79 h | ||
90% | 3852.69 ± 38.38 f,g | 3383.63 ± 71.42 i | 2913.88 ± 147.6 j |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goetjes, V.; Zarges, J.-C.; Heim, H.-P. Differentiation between Hydrolytic and Thermo-Oxidative Degradation of Poly(lactic acid) and Poly(lactic acid)/Starch Composites in Warm and Humid Environments. Materials 2024, 17, 3683. https://doi.org/10.3390/ma17153683
Goetjes V, Zarges J-C, Heim H-P. Differentiation between Hydrolytic and Thermo-Oxidative Degradation of Poly(lactic acid) and Poly(lactic acid)/Starch Composites in Warm and Humid Environments. Materials. 2024; 17(15):3683. https://doi.org/10.3390/ma17153683
Chicago/Turabian StyleGoetjes, Victoria, Jan-Christoph Zarges, and Hans-Peter Heim. 2024. "Differentiation between Hydrolytic and Thermo-Oxidative Degradation of Poly(lactic acid) and Poly(lactic acid)/Starch Composites in Warm and Humid Environments" Materials 17, no. 15: 3683. https://doi.org/10.3390/ma17153683
APA StyleGoetjes, V., Zarges, J. -C., & Heim, H. -P. (2024). Differentiation between Hydrolytic and Thermo-Oxidative Degradation of Poly(lactic acid) and Poly(lactic acid)/Starch Composites in Warm and Humid Environments. Materials, 17(15), 3683. https://doi.org/10.3390/ma17153683