Unrefined and Milled Ilmenite as a Cost-Effective Photocatalyst for UV-Assisted Destruction and Mineralization of PFAS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Construction of the Photocatalytic Reactor and Photodegradation Experiments of PFOA and PFOS
2.2.1. Ilmenite Photocatalyst Reusability Study
2.2.2. Model Fitting of Temporal Photocatalytic Degradation of PFOA and PFOS
2.3. Quantification of PFAS Compounds during and after Photocatalytic Degradation in Photocatalytic Reactor
2.3.1. HPLC Conditions and HPLC–MS/MS Quantification of PFAS
2.3.2. Analysis of Intermediate Products of PFOA and PFOS Mineralization by Ilmenite Photocatalytic Reactor
2.4. Free Fluoride Measurements of PFOA and PFOS Photocatalytic Degradation Experiments
2.5. Physical and Chemical Characterization of the Photocatalyst Material
2.6. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) Analysis
2.7. Fourier-Transform Infrared Spectroscopy (FTIR) of Fresh and Spent Ilmenite Photocatalyst Material
2.8. Radical Scavenger Experiments
3. Results and Discussion
3.1. Photocatalytic Degradation Kinetics of PFOA and PFOS
3.2. Reusability and Deterioration of the Ilmenite Photocatalyst Material over Successive Reaction Cycles
3.3. Characterization of Raw Ilmenite
3.3.1. SEM and EDS Analysis of Ilmenite Photocatalyst Material
3.3.2. BET Analysis and Potential PFAS Adsorption by Raw Ilmenite Photocatalyst Material
3.3.3. FTIR Analysis of the Raw and Spent Ilmenite Photocatalyst after PFAS Degradation Experiments
3.3.4. XRD Analysis of Raw Ilmenite
3.4. Defluorination and Mineralization of PFAS Compounds by Ilmenite/UV Photocatalysis
3.4.1. Defluorination of PFAS Compounds during Photocatalytic Degradation by UV/Ilmenite
3.4.2. The Effect of Radical Scavenger Additions in Ilmenite and UV-C Photocatalytic Degradation of PFAS
3.4.3. Putative Photocatalytic Degradation Mechanisms of PFOA and PFOS by UV/Ilmenite Photocatalysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolan, N.; Sarkar, B.; Yan, Y.; Li, Q.; Wijesekara, H.; Kannan, K.; Tsang, D.C.W.; Schauerte, M.; Bosch, J.; Noll, H. Remediation of poly-and perfluoroalkyl substances (PFAS) contaminated soils–to mobilize or to immobilize or to degrade? J. Hazard. Mater. 2021, 401, 123892. [Google Scholar] [CrossRef] [PubMed]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per-and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef]
- Podder, A.; Sadmani, A.H.M.A.; Reinhart, D.; Chang, N.-B.; Goel, R. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. J. Hazard. Mater. 2021, 419, 126361. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, L.; Zhao, S.; Ma, X. Sequestration and bioavailability of perfluoroalkyl acids (PFAAs) in soils: Implications for their underestimated risk. Sci. Total Environ. 2016, 572, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Alinezhad, A.; Challa Sasi, P.; Zhang, P.; Yao, B.; Kubátová, A.; Golovko, S.A.; Golovko, M.Y.; Xiao, F. An investigation of thermal air degradation and pyrolysis of per-and polyfluoroalkyl substances and aqueous film-forming foams in soil. Acs Es&T Eng. 2022, 2, 198–209. [Google Scholar]
- Duinslaeger, N.; Radjenovic, J. Electrochemical degradation of per-and polyfluoroalkyl substances (PFAS) using low-cost graphene sponge electrodes. Water Res. 2022, 213, 118148. [Google Scholar] [CrossRef] [PubMed]
- Sidnell, T.; Wood, R.J.; Hurst, J.; Lee, J.; Bussemaker, M.J. Sonolysis of per-and poly fluoroalkyl substances (PFAS): A meta-analysis. Ultrason. Sonochem. 2022, 87, 105944. [Google Scholar] [CrossRef]
- McDonough, J.T.; Kirby, J.; Bellona, C.; Quinnan, J.A.; Welty, N.; Follin, J.; Liberty, K. Validation of supercritical water oxidation to destroy perfluoroalkyl acids. Remediat. J. 2022, 32, 75–90. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Bezerra de Souza, B.; Casarini, M.M.; Kewalramani, J.A. A review of PFAS destruction technologies. Int. J. Environ. Res. Public Health 2022, 19, 16397. [Google Scholar] [CrossRef]
- Xia, C.; Lim, X.; Yang, H.; Goodson, B.M.; Liu, J. Degradation of per-and polyfluoroalkyl substances (PFAS) in wastewater effluents by photocatalysis for water reuse. J. Water Process Eng. 2022, 46, 102556. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Lee, R.B.; Lee, K.M.; Lai, C.W.; Pan, G.-T.; Yang, T.C.K.; Juan, J.C. The relationship between iron and Ilmenite for photocatalyst degradation. Adv. Powder Technol. 2018, 29, 1779–1786. [Google Scholar] [CrossRef]
- Moctezuma, E.; Zermeño, B.; Zarazua, E.; Torres-Martínez, L.M.; García, R. Photocatalytic degradation of phenol with Fe-titania catalysts. Top. Catal. 2011, 54, 496–503. [Google Scholar] [CrossRef]
- Pataquiva-Mateus, A.Y.; Zea, H.R.; Ramirez, J.H. Degradation of Orange II by Fenton reaction using ilmenite as catalyst. Environ. Sci. Pollut. Res. 2017, 24, 6187–6194. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Chorover, J. Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy. Environ. Chem. 2012, 9, 148–157. [Google Scholar] [CrossRef]
- Wang, M.; Orr, A.A.; Jakubowski, J.M.; Bird, K.E.; Casey, C.M.; Hearon, S.E.; Tamamis, P.; Phillips, T.D. Enhanced adsorption of per-and polyfluoroalkyl substances (PFAS) by edible, nutrient-amended montmorillonite clays. Water Res. 2021, 188, 116534. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Bian, J.; Zhang, Y.; Zhu, L.; Liu, Z. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals. Chemosphere 2014, 114, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sarkar, D.; Datta, R.; Deng, Y. Adsorption of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by aluminum-based drinking water treatment residuals. J. Hazard. Mater. Lett. 2021, 2, 100034. [Google Scholar] [CrossRef]
- Chavoshan, S.; Khodadadi, M.; Nasseh, N. Photocatalytic degradation of penicillin G from simulated wastewater using the UV/ZnO process: Isotherm and kinetic study. J. Environ. Heal. Sci. Eng. 2020, 18, 107–117. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Fang, C.; Li, C. Highly efficient degradation of perfluorooctanoic acid over a MnOx-modified oxygen-vacancy-rich In2O3 photocatalyst. ChemCatChem 2019, 11, 2297–2303. [Google Scholar] [CrossRef]
- Xu, B. Photocatalysis of Aqueous Perfluorooctanoic Acid by TiO2 and Ga2O3 Assisted with Peroxymonosulfate under UV and Visible Light. Doctoral Dissertation, University of Technology Sydney, Sydney, Australia, 2020. [Google Scholar]
- García-Muñoz, P.; Pliego, G.; Zazo, J.A.; Bahamonde, A.; Casas, J.A. Ilmenite (FeTiO3) as low cost catalyst for advanced oxidation processes. J. Environ. Chem. Eng. 2016, 4, 542–548. [Google Scholar] [CrossRef]
- Lashuk, B.; Pineda, M.; AbuBakr, S.; Boffito, D.; Yargeau, V. Application of photocatalytic ozonation with a WO3/TiO2 catalyst for PFAS removal under UVA/visible light. Sci. Total Environ. 2022, 843, 157006. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, S.; Tijani, J.O.; Elabor, R.; Etsuyankpa, M.B.; Amigun, A.T.; Shuaib, D.T.; Sumaila, A.; Olaoye, A.J.; Abubakar, H.L.; Abdulkareem, S.A. Photocatalytic Degradation and Defluorination of Per- and Poly-Fluoroalkyl Substance (PFAS) Using Biosynthesized TiO2 Nanoparticles under UV-Visible Light. Eng. Proc. 2023, 37, 114. [Google Scholar]
- Method 1633; Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS. United States Environment Protection Agency: Washington, DC, USA, January 2024. Available online: https://www.epa.gov/system/files/documents/2024-01/method-1633-final-for-web-posting.pdf (accessed on 30 June 2024).
- Daneshvar, N.; Rabbani, M.; Modirshahla, N.; Behnajady, M.A. Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process. J. Photochem. Photobiol. A Chem. 2004, 168, 39–45. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Arami, M.; Limaee, N.Y.; Tabrizi, N.S. Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J. Colloid Interface Sci. 2006, 295, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Kiwaan, H.A.; Atwee, T.M.; Azab, E.A.; El-Bindary, A.A. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. J. Mol. Struct. 2020, 1200, 127115. [Google Scholar] [CrossRef]
- Kadam, V.V.; Shanmugam, S.D.; Ettiyappan, J.P.; Balakrishnan, R.M. Photocatalytic degradation of p-nitrophenol using biologically synthesized ZnO nanoparticles. Environ. Sci. Pollut. Res. 2021, 28, 12119–12130. [Google Scholar] [CrossRef] [PubMed]
- Tumbelaka, R.M.; Istiqomah, N.I.; Kato, T.; Oshima, D.; Suharyadi, E. High reusability of green-synthesized Fe3O4/TiO2 photocatalyst nanoparticles for efficient degradation of methylene blue dye. Mater. Today Commun. 2022, 33, 104450. [Google Scholar] [CrossRef]
- Parirenyatwa, S.; Escudero-Castejon, L.; Sanchez-Segado, S.; Hara, Y.; Jha, A. Comparative study of alkali roasting and leaching of chromite ores and titaniferous minerals. Hydrometallurgy 2016, 165, 213–226. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Abdou, M.I.; Migahed, M.A.; Fadl, A.M.; Farag, A.A.; Mohammedy, M.M.; Abd-Elwanees, S.; Deiab, A. Influence of ilmenite ore particles as pigment on the anticorrosion and mechanical performance properties of polyamine cured epoxy for internal coating of gas transmission pipelines. Egypt. J. Pet. 2018, 27, 427–436. [Google Scholar] [CrossRef]
- Pham, X.N.; Pham, D.T.; Ngo, H.S.; Nguyen, M.B.; Doan, H. V Characterization and application of C–TiO2 doped cellulose acetate nanocomposite film for removal of Reactive Red-195. Chem. Eng. Commun. 2021, 208, 304–317. [Google Scholar] [CrossRef]
- Wijewardhana, T.D.U.; Ratnayake, A.S. Applicability of carbothermic reduction for upgrading Sri Lankan ilmenite ores: Towards converting ilmenite into synthetic rutile by mechanical activation. Bull. Natl. Res. Cent. 2021, 45, 149. [Google Scholar] [CrossRef]
- Phoohinkong, W.; Pavasupree, S.; Wannagon, A.; Sanguanpak, S.; Boonyarattanakalin, K.; Mekprasart, W.; Pecharapa, W. Characterization and x-ray absorption spectroscopy of ilmenite nanoparticles derived from natural ilmenite ore via acid-assisted mechanical ball-milling process. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 35012. [Google Scholar] [CrossRef]
- Pande, G.; Selvakumar, S.; Ciotonea, C.; Giraudon, J.-M.; Lamonier, J.-F.; Batra, V.S. Modified red mud catalyst for volatile organic compounds oxidation. Catalysts 2021, 11, 838. [Google Scholar] [CrossRef]
- Hu, S.; Wu, Y.; Ding, Z.; Shi, Z.; Li, F.; Liu, T. Facet-dependent reductive dissolution of hematite nanoparticles by Shewanella putrefaciens CN-32. Environ. Sci. Nano 2020, 7, 2522–2531. [Google Scholar] [CrossRef]
- Tang, Z.; Xu, L.; Shu, K.; Yang, J.; Tang, H. Fabrication of TiO2@ MoS2 heterostructures with improved visible light photocatalytic activity. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 642, 128686. [Google Scholar] [CrossRef]
- Pelaez, M.; Falaras, P.; Likodimos, V.; O’Shea, K.; de la Cruz, A.A.; Dunlop, P.S.M.; Byrne, J.A.; Dionysiou, D.D. Use of selected scavengers for the determination of NF-TiO2 reactive oxygen species during the degradation of microcystin-LR under visible light irradiation. J. Mol. Catal. A Chem. 2016, 425, 183–189. [Google Scholar] [CrossRef]
- Yang, H.; Park, S.-J.; Lee, C.-G. Enhanced removal of perfluoroalkyl substances using MMO-TiO2 visible light photocatalyst. Alex. Eng. J. 2024, 87, 31–38. [Google Scholar] [CrossRef]
Compound/Enzyme | Scavenger Type |
---|---|
Copper (II) nitrate | e− scavenger |
Methanol | •OH scavenger |
Superoxide dismutase | O2•− scavenger |
Catalase | H2O2 scavenger |
PFAS Concentration (ppb) | PFOA | PFOS | ||||
---|---|---|---|---|---|---|
Pseudo-First-Order Rate Constant (k) (h−1) | Maximum Removal Efficiency (%) | Coefficient of Determination (R2) | Pseudo-First-Order Rate Constant (k) (h−1) | Maximum Removal Efficiency (%) | Coefficient of Determination (R2) | |
200 | 0.8 | 99.7 | 0.99 | 1.2 | 99.49 | 0.99 |
400 | 0.59 | 99.1 | 0.98 | 0.83 | 99.2 | 0.98 |
800 | 0.35 | 98.6 | 0.99 | 0.39 | 98.8 | 0.98 |
1000 | 0.16 | 97.1 | 0.98 | 0.21 | 97.3 | 0.98 |
Control-1 | 0.002 | 0.09 | 0.98 | 0.003 | ND | 0.96 |
Control-2 | 0.01 | 7.72 | 0.97 | 0.02 | 8.91 | 0.97 |
Element | Ti | Fe | O | Al | C | Si |
---|---|---|---|---|---|---|
Mass % | 35.7 | 24.44 | 37.59 | 0.66 | 1.53 | 0.08 |
Atomic % | 20.21 | 11.87 | 63.72 | 0.67 | 3.45 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernando, E.Y.; Sarkar, D.; Rodwihok, C.; Satpathy, A.; Zhang, J.; Rahmati, R.; Datta, R.; Christodoulatos, C.; Boufadel, M.; Larson, S.; et al. Unrefined and Milled Ilmenite as a Cost-Effective Photocatalyst for UV-Assisted Destruction and Mineralization of PFAS. Materials 2024, 17, 3801. https://doi.org/10.3390/ma17153801
Fernando EY, Sarkar D, Rodwihok C, Satpathy A, Zhang J, Rahmati R, Datta R, Christodoulatos C, Boufadel M, Larson S, et al. Unrefined and Milled Ilmenite as a Cost-Effective Photocatalyst for UV-Assisted Destruction and Mineralization of PFAS. Materials. 2024; 17(15):3801. https://doi.org/10.3390/ma17153801
Chicago/Turabian StyleFernando, Eustace Y., Dibyendu Sarkar, Chatchai Rodwihok, Anshuman Satpathy, Jinxin Zhang, Roxana Rahmati, Rupali Datta, Christos Christodoulatos, Michel Boufadel, Steven Larson, and et al. 2024. "Unrefined and Milled Ilmenite as a Cost-Effective Photocatalyst for UV-Assisted Destruction and Mineralization of PFAS" Materials 17, no. 15: 3801. https://doi.org/10.3390/ma17153801
APA StyleFernando, E. Y., Sarkar, D., Rodwihok, C., Satpathy, A., Zhang, J., Rahmati, R., Datta, R., Christodoulatos, C., Boufadel, M., Larson, S., & Zhang, Z. (2024). Unrefined and Milled Ilmenite as a Cost-Effective Photocatalyst for UV-Assisted Destruction and Mineralization of PFAS. Materials, 17(15), 3801. https://doi.org/10.3390/ma17153801