Experimental Study on the Temperature-Dependent Static, Dynamic, and Post-Dynamic Mechanical Characteristics of Municipal Solid Waste
Abstract
:1. Introduction
2. Experimental Program
2.1. Experimental Apparatus
2.2. Test Materials
2.3. Experimental Procedure
3. Results and Analysis
3.1. The Temperature-Dependent Static Mechanical Performance of MSW under Monotonic Shear Loading
3.2. The Temperature-Dependent Dynamic Mechanical Performance of MSW under Cyclic Shear Loading
3.3. The Temperature-Dependent MSW Mechanical Response in Post—Cyclic Monotonic Shear Loading
3.4. The Comparison between Temperature-Dependent Static, Dynamic and Post-Cyclic Shear Mechanical Response of MSW
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kulkarni, B.N.; Anantharama, V. Repercussions of COVID-19 pandemic on municipal solid waste management: Challenges and opportunities. Sci. Total Environ. 2020, 743, 140693. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S.; Prajapati, P.; Shah, A.V.; Varjani, S. Municipal solid waste management: Dynamics, risk assessment, ecological influence, advancements, constraints and perspectives. Sci. Total Environ. 2022, 814, 152802. [Google Scholar] [CrossRef] [PubMed]
- Magazzino, C.; Mele, M.; Schneider, N. The relationship between municipal solid waste and greenhouse gas emissions: Evidence from Switzerland. Waste Manag. 2020, 113, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Chao, Z.; Shi, D.; Fowmes, G. Mechanical behaviour of soil under drying–wetting cycles and vertical confining pressures. Environ. Geotech. 2023, 40, 1–11. [Google Scholar] [CrossRef]
- Chao, Z.; Shi, D.; Zheng, J. Experimental research on temperature–Dependent dynamic interface interaction between marine coral sand and polymer layer. Ocean Eng. 2024, 297, 117100. [Google Scholar] [CrossRef]
- Chao, Z.; Wang, H.; Hu, S. Permeability and porosity of light-weight concrete with plastic waste aggregate: Experimental study and machine learning modelling. Constr. Bulid. Mater. 2024, 411, 134465. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Chen, Q.; Wang, H. Attitude of Chinese public towards municipal solid waste sorting policy: A text mining study. Sci. Total Environ. 2021, 756, 142674. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Liu, X.; Chen, G.H. Municipal solid waste: Review of best practices in application of life cycle assessment and sustainable management techniques. Sci. Total Environ. 2020, 729, 138622. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Cheng, Y.; He, D.; Yang, E.H. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total Environ. 2019, 668, 90–103. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Zhang, Y.; Ruan, S.; Mechtcherine, V.; Tsang, D.C. Roles of biochar in cement-based stabilization/solidification of municipal solid waste incineration fly ash. Chem. Eng. J. 2022, 430, 132972. [Google Scholar] [CrossRef]
- Liu, H.; Han, J.; Parsons, R.L. Numerical analysis of geosynthetics to mitigate seasonal temperature change-induced problems for integral bridge abutment. Acta Geotech. 2023, 18, 673–693. [Google Scholar] [CrossRef]
- Tincopa, M.; Bouazza, A. Water retention curves of a geosynthetic clay liner under non-uniform temperature-stress paths. Geotext. Geomembr. 2021, 49, 1270–1279. [Google Scholar] [CrossRef]
- Hu, L.; Qian, Y.; Ci, M.; Long, Y.; Zheng, H.; Xu, K.; Wang, Y. Localized intensification of arsenic methylation within landfill leachate-saturated zone. Sci. Total Environ. 2022, 842, 156979. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Jin, Y.; Jing, Y. Elastoplastic Solution of Cylindrical Cavity Expansion in Unsaturated Offshore Island Soil Considering Anisotropy. J. Mar. Sci. Eng. 2024, 12, 308. [Google Scholar] [CrossRef]
- Chavan, D.; Manjunatha, G.; Singh, D.; Periyaswami, L.; Kumar, S.; Kumar, R. Estimation of spontaneous waste ignition time for prevention and control of landfill fire. Waste Manag. 2022, 139, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Florentino, B.; Cheng, Q.; Call, D.F.; Barlaz, M.A. Evidence of thermophilic waste decomposition at a landfill exhibiting elevated temperature regions. Waste Manag. 2021, 124, 26–35. [Google Scholar]
- Dong, Y. Reseeding of particles in the material point method for soil–structure interactions. Comput. Geotech. 2020, 127, 103716. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, D.; Randolph, M.F. Investigation of impact forces on pipeline by submarine landslide using material point method. Ocean Eng. 2017, 146, 21–28. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, D.; Randolph, M.F. Quantification of impact forces on fixed mudmats from submarine landslides using the material point method. Appl. Ocean Res. 2020, 102, 102227. [Google Scholar] [CrossRef]
- Anjana, R.; Keerthana, S.; Arnepalli, D.N. Coupled effect of UV ageing and temperature on the diffusive transport of aqueous, vapour and gaseous phase organic contaminants through HDPE geomembrane. Geotext. Geomembr. 2023, 51, 316–329. [Google Scholar] [CrossRef]
- Fan, N.; Jiang, J.; Nian, T. Impact action of submarine slides on pipelines: A review of the state-of-the-art since 2008. Ocean Eng. 2023, 286, 115532. [Google Scholar] [CrossRef]
- Gan, L.; Xu, W.; Zhang, Z. Macro-microscopic experimental and numerical simulation study of fiber-mixed concrete under the salt-freezing effect. J. Build. Eng. 2024, 82, 108371. [Google Scholar] [CrossRef]
- Francey, W.; Rowe, R.K. Importance of thickness reduction and squeeze-out Std-OIT loss for HDPE geomembrane fusion seams. Geotext. Geomembr. 2023, 51, 30–42. [Google Scholar] [CrossRef]
- Samea, A.; Abdelaal, F. Effect of elevated temperatures on the degradation behaviour of elastomeric bituminous geomembranes. Geotext. Geomembr. 2023, 51, 219–232. [Google Scholar] [CrossRef]
- Hou, Z.; Liu, Y.; Han, Z. Experimental Study of the Bearing Characteristics of a Novel Energy-Saving and Environmentally Friendly Pile: Drilling with Prestressed Concrete Pipe Cased Piles. Int. J. Geomech. 2024, 24, 04024035. [Google Scholar] [CrossRef]
- Li, T.; Zhu, Z.; Wu, T. A potential way for improving the dispersivity and mechanical properties of dispersive soil using calcined coal gangue. J. Mater. Res. Technol. 2024, 29, 3049–3062. [Google Scholar] [CrossRef]
- Lin, H.; Gong, X.; Zeng, Y. Experimental study on the effect of temperature on HDPE geomembrane/geotextile interface shear characteristics. Geotext. Geomembr. 2024, 52, 396–407. [Google Scholar] [CrossRef]
- Lin, H.; Huang, W.; Wang, L. Transport of Organic Contaminants in Composite Vertical Cut-Off Wall with Defective HDPE Geomembrane. Polymers 2023, 15, 3031. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Luo, J.; Zhou, C. Research on model material selection based on inception similarity in impact analysis of flood overtopping on tailings dam. Environ. Earth Sci. 2023, 82, 276. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Nie, C.; Zhang, Z.; Li, T. Laboratory studies of the dynamic characteristics of mechanically–biologically treated waste. Waste Manag. 2023, 160, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.J.; Gao, K.W.; Chen, Y.X.; Li, Y.; Zhang, L.; Chen, H. Geotechnical properties of municipal solid waste at Laogang Landfill, China. Waste Manag. 2017, 63, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Bareither, C.A.; Benson, C.H.; Rohlf, E.M.; Scalia IV, J. Hydraulic and mechanical behavior of municipal solid waste and high-moisture waste mixtures. Waste Manag. 2020, 105, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Ceccato, F.; Yerro, A.; Girardi, V.; Simonini, P. Two-phase dynamic MPM formulation for unsaturated soil. Comput. Geotech. 2021, 129, 103876. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Y.; Ling, X. Dynamic behavior of natural sand soils and fiber reinforced soils in heavy-haul railway embankment under multistage cyclic loading. Transp. Geotech. 2021, 28, 100507. [Google Scholar] [CrossRef]
- Ren, P.; Chen, Z.L.; Li, L. Dynamic shakedown behaviors of flexible pavement overlying saturated ground under moving traffic load considering effect of pavement roughness. Comput. Geotech. 2024, 168, 106134. [Google Scholar] [CrossRef]
- Shao, W.; He, X.; Shi, D. Prediction of Crack Width in RC Piles Exposed to Local Corrosion in Chloride Environment. Materials 2023, 16, 6403. [Google Scholar] [CrossRef]
- Shao, W.; Li, Q.; Zhang, W. Numerical modeling of chloride diffusion in cement-based materials considering calcium leaching and external sulfate attack. Constr. Build. Mater. 2023, 401, 132913. [Google Scholar] [CrossRef]
- Shao, W.; Qin, F.; Shi, D. Horizontal bearing characteristic and seismic fragility analysis of CFRP composite pipe piles subject to chloride corrosion. Comput. Geotech. 2024, 166, 105977. [Google Scholar] [CrossRef]
- Ramarad, S.; Khalid, M.; Ratnam, C.; Chuah, A.L.; Rashmi, W. Waste tire rubber in polymer blends: A review on the evolution, properties and future. Prog. Mater. Sci. 2015, 72, 100–140. [Google Scholar] [CrossRef]
- Shi, D.; Chen, X.; Shao, W. Modeling of bidirectional chloride convection-diffusion for corrosion initiation life prediction of RC square piles under drying-wetting cycle. Appl. Ocean Res. 2023, 141, 103789. [Google Scholar] [CrossRef]
- Shi, D.; Niu, J.; Zhang, J. Effects of particle breakage on the mechanical characteristics of geogrid-reinforced granular soils under triaxial shear: A DEM investigation. Geomech. Energy Environ. 2023, 34, 100446. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Z.; Peng, Z.; Formela, K.; Wang, S. Dynamic mechanical properties and flexing fatigue resistance of tire sidewall rubber as function of waste tire rubber reclaiming degree. J. Appl. Polym. Sci. 2021, 138, 51290. [Google Scholar] [CrossRef]
- Shu, Y.; Zhu, Z.; Wang, M. Parameter calibration of the tensile-shear interactive damage constitutive model for sandstone failure. J. Rock Mech. Geotech. Eng. 2024, 16, 1153–1174. [Google Scholar] [CrossRef]
- Song, S.; Wang, P.; Yin, Z. Micromechanical modeling of hollow cylinder torsional shear test on sand using discrete element method. J. Rock Mech. Geotech. Eng. 2024, in press. [Google Scholar] [CrossRef]
- Kumar, G.; Reddy, K.R.; Foster, C. Modeling elasto-visco-bio-plastic mechanical behavior of municipal solid waste in landfills. Acta Geotech. 2021, 16, 1061–1081. [Google Scholar] [CrossRef]
- Wan, D.; Wang, M.; Zhu, Z. A coupled model of asymmetric GIMP and tetrahedron CPDI based on the penalty contact algorithm for simulating dynamic rock splitting. Int. J. Rock Mech. Min. 2023, 170, 105483. [Google Scholar] [CrossRef]
- Wan, D.; Wang, M.; Zhu, Z. Coupled GIMP and CPDI material point method in modelling blast-induced three-dimensional rock fracture. Int. J. Min. Sci. Technol. 2022, 32, 1097–1114. [Google Scholar] [CrossRef]
- Wang, F.; Ding, C.; Pan, H. A mesostructure-informed cohesion-based numerical method for fracture behavior of slate with foliation structure. Int. J. Rock Mech. Min. 2022, 160, 105252. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, D.; Huang, H. A phase-field-based multi-physics coupling numerical method and its application in soil–water inrush accident of shield tunnel. Tunn. Undergr. Space Technol. 2023, 140, 105233. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, M.; Shen, W. Fluid-solid-phase multi-field coupling modeling method for hydraulic fracture of saturated brittle porous materials. Eng. Fract. Mech. 2023, 286, 109231. [Google Scholar] [CrossRef]
- Wang, P.; Xu, C.; Yin, Z.Y. A DEM-based Generic Modeling Framework for Hydrate-Bearing Sediments. Comput. Geotech. 2024, 171, 106287. [Google Scholar] [CrossRef]
- Wang, P.; Yin, Z.Y.; Hicher, P.Y. Micro-mechanical analysis of one-dimensional compression of clay with DEM. Int. J. Numeranal. Met. 2023, 47, 2706–2724. [Google Scholar] [CrossRef]
- Wang, P.; Yin, Z.Y.; Wang, Z.Y. Micromechanical investigation of particle-size effect of granular materials in biaxial test with the role of particle breakage. J. Eng. Mech.-ASCE 2022, 148, 04021133. [Google Scholar] [CrossRef]
- Bai, F.; Yang, X.; Zeng, G. A stochastic viscoelastic–viscoplastic constitutive model and its application to crumb rubber modified asphalt mixtures. Mater. Des. 2016, 89, 802–809. [Google Scholar] [CrossRef]
- Xu, J.; Gong, J.; Li, Y. Surf-riding and broaching prediction of ship sailing in regular waves by LSTM based on the data of ship motion and encounter wave. Ocean Eng. 2024, 297, 117010. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Wang, P.; Zhang, F. Effect of particle shape on the progressive failure of shield tunnel face in granular soils by coupled FDM-DEM method. Tunn. Undergr. Space Technol. 2020, 100, 103394. [Google Scholar] [CrossRef]
- Yu, S.; Sun, Z.; Ren, X.; Zhang, J.; Yu, J.; Zhang, W. An improved Smoothed Particle Hydrodynamics (SPH) method for modelling the cracking processes of teeth and its applications. J. Mech. Behav. Biomed. 2022, 136, 105518. [Google Scholar] [CrossRef]
- Yu, S.; Ren, X.; Zhang, J. Simulating the chemical-mechanical-damage coupling problems of cement-based materials using an improved smoothed particle hydrodynamics method. Case Stud. Constr. Mat. 2023, 18, e02018. [Google Scholar] [CrossRef]
- Yu, S.; Ren, X.; Zhang, J. Numerical simulation on the excavation damage of Jinping deep tunnels based on the SPH method. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 1. [Google Scholar] [CrossRef]
- Yu, S.; Sun, Z.; Yu, J. An improved meshless method for modeling the mesoscale cracking processes of concrete containing random aggregates and initial defects. Constr. Build. Mater. 2023, 363, 129770. [Google Scholar] [CrossRef]
- Jeswani, H.; Krüger, C.; Russ, M.; Horlacher, M.; Antony, F.; Hann, S.; Azapagic, A. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Sci. Total Environ. 2021, 769, 144483. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Hernández, S. Energy, environmental, resource recovery, and economic dimensions of municipal solid waste management paths in Mexicocity. Waste Manag. 2021, 136, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, H.; Shi, D. Determination of Safety Monitoring Indices for Roller-Compacted Concrete Dams Considering Seepage–Stress Coupling Effects. Mathematics 2023, 11, 3224. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, D.; Shen, Z. Influence of chopped basalt fibers on the fracture performance of concrete subjected to calcium leaching. Theor. Appl. Fract. Mech. 2023, 125, 103934. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, W.; Zheng, J. The influence of waves propagating with the current on the wake of a tidal stream turbine. Appl. Energy 2021, 290, 116729. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zheng, J. Research of the array spacing effect on wake interaction of tidal stream turbines. Ocean Eng. 2023, 276, 114227. [Google Scholar] [CrossRef]
- Lapeña-Mañero, P.; García-Casuso, C.; Cañizal, J.; Sagaseta, C. Shear strength characterization of fresh MBT and MSWI wastes from a Spanish treatment facility. Waste Manag. 2022, 154, 15–26. [Google Scholar] [CrossRef]
- Liu, M.; Lu, H.; Deng, Q.; Ji, S.; Qin, L.; Wan, Y. Shear strength, water permeability and microstructure of modified municipal sludge based on industrial solid waste containing calcium used as landfill cover materials. Waste Manag. 2022, 145, 20–28. [Google Scholar] [CrossRef]
- Xie, Y.; Xue, J.; Gnanendran, C.T.; Xie, K. Physical, geotechnical and biochemical behaviours of municipal solid waste in field and laboratory bioreactors. Waste Manag. 2023, 159, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zang, T.; Xiao, H.; Feng, W.; Liu, Y. Experimental study of polypropylene fibre-reinforced clay soil mixed with municipal solid waste incineration bottom ash. Eur. J. Environ. Civ. Eng. 2023, 27, 2700–2716. [Google Scholar] [CrossRef]
- Chao, Z.; Fowmes, G.; Mousa, A.; Zhou, J.; Zhao, Z.; Zheng, J.; Shi, D. A new large-scale shear apparatus for testing geosynthetics-soil interfaces incorporating thermal condition. Geotext. Geomembr. 2024, 52, 999–1010. [Google Scholar] [CrossRef]
- Chao, Z.; Li, Z.; Dong, Y.; Shi, D.; Zheng, J. Estimating compressive strength of coral sand aggregate concrete in marine environment by combining physical experiments and machine learning-based techniques. Ocean Eng. 2024, 308, 118320. [Google Scholar] [CrossRef]
- Dong, Y.; Cui, L.; Zhang, X. Multiple-GPU for three dimensional MPM based on single-root complex. Int. J. Numer. Methods Eng. 2022, 123, 1481–1504. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.-S.; Poon, C.-S.; Jiang, W.-H.; Ma, Z.-H.; Chen, X.; Lu, J.-X.; Dong, H.-X. Physicochemical and pozzolanic properties of municipal solid waste incineration fly ash with different pretreatments. Waste Manag. 2023, 160, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xue, J. Experimental investigation of water retention curves of municipal solid wastes with different paper contents, dry unit weights and degrees of biodegradation. Waste Manag. 2023, 163, 73–84. [Google Scholar] [CrossRef] [PubMed]
- ASTM D5379/D5379M-19e1; Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method. ASTM International: West Conshohocken, PA, USA, 2021.
- Hanson, J.L.; Yeşiller, N.; Oettle, N.K. Spatial and temporal temperature distributions in municipal solid waste landfills. J. Environ. Eng. 2010, 136, 804–814. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, T.; Zhang, J.; Ai, Y.; Zhang, Y. Prototype heat exchange and monitoring system at a municipal solid waste landfill in China. Waste Manag. 2018, 78, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Shi, J.; Qian, X.; Ai, Y. Temperature and gas pressure monitoring and leachate pumping tests in a newly filled MSW layer of a landfill. Int. J. Environ. Res. 2019, 13, 1–19. [Google Scholar] [CrossRef]
- Zekkos, D.; Athanasopoulos, G.A.; Bray, J.D.; Grizi, A.; Theodoratos, A. Large-scale direct shear testing of municipal solid waste. Waste Manag. 2010, 30, 1544–1555. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Zekkos, D. Comparison of direct shear and simple shear responses of municipal solid waste in USA. Environ. Geotech. 2017, 5, 158–167. [Google Scholar] [CrossRef]
- Bray, J.D.; Zekkos, D.; Kavazanjian, E., Jr.; Athanasopoulos, G.A.; Riemer, M.F. Shear strength of municipal solid waste. J. Geotech. Geoenviron. 2009, 135, 709–722. [Google Scholar] [CrossRef]
- Gabr, M.; Valero, S. Geotechnical properties of municipal solid waste. Geotech. Test. J. 1995, 18, 241–251. [Google Scholar] [CrossRef]
- Pulat, H.F.; Yukselen-Aksoy, Y. Factors affecting the shear strength behavior of municipal solid wastes. Waste Manag. 2017, 69, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Landva, A.; Knowles, G.D. Geotechnics of Waste Fills: Theory and Practice; ASTM International: West Conshohocken, PA, USA, 1990. [Google Scholar]
- Thomas, S.; Aboura, A.; Gourc, J.; Gotteland, P.; Billard, H.; Delineau, T.; Gisbert, T.; Ouvry, J.; Vuillemin, M. In An in-situ waste mechanical experimentation on a French landfill. Proc. Sard. 1999, 99, 445–452. [Google Scholar]
- Chao, Z.; Dang, Y.; Pan, Y.; Wang, F.; Wang, M.; Zhang, J.; Yang, C. Prediction of the shale gas permeability: A data mining approach. Geomech. Energy Environ. 2023, 33, 100435. [Google Scholar] [CrossRef]
- Zhao, G.; Wu, T.; Ren, G. Reusing waste coal gangue to improve the dispersivity and mechanical properties of dispersive soil. J. Clean. Prod. 2023, 404, 136993. [Google Scholar] [CrossRef]
- Zhao, G.; Zhu, Z.; Ren, G. Utilization of recycled concrete powder in modification of the dispersive soil: A potential way to improve the engineering properties. Constr. Build. Mater. 2023, 389, 131626. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, J.; Feng, S.J. The era of low-permeability sites remediation and corresponding technologies: A review. Chemosphere 2023, 313, 137264. [Google Scholar] [CrossRef]
- Chao, Z.; Shi, D.; Fowmes, G.; Xu, X.; Yue, W.; Cui, P.; Hu, T.; Yang, C. Artificial intelligence algorithms for predicting peak shear strength of clayey soil-geomembrane interfaces and experimental validation. Geotext. Geomembr. 2023, 51, 179–198. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, H.; Liang, F. Numerical investigation on lateral monotonic and cyclic responses of scoured rigid monopile based on an integrated bounding surface model. Comput. Geotech. 2024, 166, 105997. [Google Scholar] [CrossRef]
- Zheng, Z.; Deng, B.; Li, S. Disturbance mechanical behaviors and anisotropic fracturing mechanisms of rock under novel three-stage true triaxial static-dynamic coupling loading. Rock Mech. Rock Eng. 2023, 57, 2445–2468. [Google Scholar] [CrossRef]
- Zheng, Z.; Xu, H.; Zhang, K. Intermittent disturbance mechanical behavior and fractional deterioration mechanical model of rock under complex true triaxial stress paths. Int. J. Min. Sci. Technol. 2024, 34, 117–136. [Google Scholar] [CrossRef]
- Baker, R. Nonlinear Mohr envelopes based on triaxial data. J. Geotech. Geoenviron. 2004, 130, 498–506. [Google Scholar] [CrossRef]
- Vieira, C.S.; Pereira, P. Interface shear properties of geosynthetics and construction and demolition waste from large-scale direct shear tests. Geosynth. Int. 2016, 23, 62–70. [Google Scholar] [CrossRef]
- Shi, J.; Shu, S.; Ai, Y.; Jiang, Z.; Li, Y.; Xu, G. Effect of elevated temperature on solid waste shear strength and landfill slope stability. Waste Manag. Res. 2021, 39, 351–359. [Google Scholar] [CrossRef]
- Saberian, M.; Li, J.; Perera, S.T.A.M.; Ren, G.; Roychand, R.; Tokhi, H. An experimental study on the shear behaviour of recycled concrete aggregate incorporating recycled tyre waste. Constr. Build. Mater. 2020, 264, 120266. [Google Scholar] [CrossRef]
- Rani, G.M.; Wu, C.M.; Motora, K.G.; Umapathi, R. Waste-to-energy: Utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting. J. Clean. Prod. 2022, 363, 132532. [Google Scholar] [CrossRef]
- Zhou, B.; Ku, Q.; Li, C. Single-particle crushing behaviour of carbonate sands studied by X-ray microtomography and a combined finite–discrete element method. Acta. Geotech. 2022, 17, 3195–3209. [Google Scholar] [CrossRef]
- Jiang, X.; Xiao, R.; Bai, Y.; Huang, B.; Ma, Y. Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures. J. Clean. Prod. 2022, 340, 130778. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, Y.; Guo, M.; Zhang, L.; Ning, H.; Liu, S. Mechanical and fracture properties of ultra-high performance concrete (UHPC) containing waste glass sand as partial replacement material. J. Clean. Prod. 2020, 277, 123501. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Pasquini, E.; Tusar, M.; Hernando, D.; Wang, D.; Mikhailenko, P.; Pasetto, M.; Baliello, A.; Falchetto, A.C.; Miljković, M. RILEM interlaboratory study on the mechanical properties of asphalt mixtures modified with polyethylene waste. J. Clean. Prod. 2022, 375, 134124. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, R.; Jiang, X.; Li, W.; Zhu, X.; Huang, B. Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers. J. Clean. Prod. 2020, 273, 122970. [Google Scholar] [CrossRef]
- Dassanayake, S.; Mousa, A.; Fowmes, G.J.; Susilawati, S.; Zamara, K. Forecasting the moisture dynamics of a landfill capping system comprising different geosynthetics: A NARX neural network approach. Geotext. Geomembr. 2023, 51, 282–292. [Google Scholar] [CrossRef]
- Chao, Z.; Fowmes, G. The short-term and creep mechanical behaviour of clayey soil-geocomposite drainage layer interfaces subjected to environmental loadings. Geotext. Geomembr. 2022, 50, 238–248. [Google Scholar] [CrossRef]
- Chao, Z.; Wang, H.; Zheng, J.; Shi, D.; Li, C.; Ding, G.; Feng, X. Temperature-Dependent Post-Cyclic Mechanical Characteristics of Interfaces between Geogrid and Marine Reef Sand: Experimental Research and Machine Learning Modeling. J. Mar. Sci. Eng. 2024, 12, 1262. [Google Scholar] [CrossRef]
- Ding, S.; Li, S.; Kong, S.; Li, Q.; Yang, T.; Nie, Z.; Zhao, G. Changing of mechanical property and bearing capacity of strongly chlorine saline soil under freeze-thaw cycles. Sci. Rep. 2024, 14, 6203. [Google Scholar] [CrossRef]
- Dong, Y.; Liao, Z.; Wang, J.; Liu, Q.; Cui, L. Potential failure patterns of a large landslide complex in the Three Gorges Reservoir area. Bull. Eng. Geol. Environ. 2023, 82, 41. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, J.; Xiong, W. A machine learning-based strategy for experimentally estimating force chains of granular materials using X-ray micro-tomography. Géotechnique 2023. ahead of print. [Google Scholar] [CrossRef]
- Zhang, S.; He, P.; Niu, L. Mechanical properties and permeability of fiber-reinforced concrete with recycled aggregate made from waste clay brick. J. Clean. Prod. 2020, 268, 121690. [Google Scholar] [CrossRef]
- Rao, P.; Feng, W.; Ouyang, P. Formation of plasma channel under high-voltage electric pulse and simulation of rock-breaking process. Phys. Scr. 2023, 99, 015604. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Z.; Zhang, Z.; Yu, J.; Oeser, M.; Wang, D. Recycling waste packaging tape into bituminous mixtures towards enhanced mechanical properties and environmental benefits. J. Clean. Prod. 2019, 229, 22–31. [Google Scholar] [CrossRef]
- Ma, M.; Ha, Z.; Xu, X.; Lv, C.; Li, C.; Du, D.; Chi, R. Simultaneous immobilization of multiple heavy metals in polluted soils amended with mechanical activation waste slag. Sci. Total Environ. 2023, 894, 164730. [Google Scholar] [CrossRef] [PubMed]
Experiment Type | Normal Stress (kPa) | Shear Rate (mm/min) | Shear Amplitude (mm) | Temperature (°C) |
---|---|---|---|---|
Monotonic direct shear test | 50 100 150 | 1.0 | 55.0 | 5 20 40 60 80 |
Cyclic shear test | 50 100 150 | 1.0 | 3.0 | 5 20 40 60 80 |
Post-cyclic direct shear test | 50 100 150 | 1.0 | 55.0 | 5 20 40 60 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Hu, S.; Zhou, J.; Cui, P.; Jiang, Y. Experimental Study on the Temperature-Dependent Static, Dynamic, and Post-Dynamic Mechanical Characteristics of Municipal Solid Waste. Materials 2024, 17, 4012. https://doi.org/10.3390/ma17164012
Wang Z, Hu S, Zhou J, Cui P, Jiang Y. Experimental Study on the Temperature-Dependent Static, Dynamic, and Post-Dynamic Mechanical Characteristics of Municipal Solid Waste. Materials. 2024; 17(16):4012. https://doi.org/10.3390/ma17164012
Chicago/Turabian StyleWang, Zejin, Shuyu Hu, Jiaxin Zhou, Peng Cui, and Ying Jiang. 2024. "Experimental Study on the Temperature-Dependent Static, Dynamic, and Post-Dynamic Mechanical Characteristics of Municipal Solid Waste" Materials 17, no. 16: 4012. https://doi.org/10.3390/ma17164012
APA StyleWang, Z., Hu, S., Zhou, J., Cui, P., & Jiang, Y. (2024). Experimental Study on the Temperature-Dependent Static, Dynamic, and Post-Dynamic Mechanical Characteristics of Municipal Solid Waste. Materials, 17(16), 4012. https://doi.org/10.3390/ma17164012