Recent Progress of Iron-Based Magnetic Absorbers and Its Applications in Elastomers: A Review
Abstract
:1. Introduction
2. The Principles of Electromagnetic Wave Absorption
Electromagnetic Wave Absorbing Material | Features | |
---|---|---|
Carbon-based material | Hollow carbon microspheres [37], carbon nanotubes [38,39], layered carbon [40], porous carbon [41], reduced graphene oxide [42], carbon-based composites [43,44,45] | Lightweight, high conductivity, large specific surface area |
Conductive polymer-based materials | Polyaniline matrix composites [46,47], polypyrrole matrix composites [19,48], polythiophenyl matrix composites [49] | Low density, High mechanical performance, controllable electrical conductivity [50], excellent corrosion resistance |
Iron-based material | Carbonyl iron [51], ferrites [52], soft magnetic alloys [53] | Excellent magnetic properties [54], high Snoek limit, high Curie temperature, strong magnetic loss capability |
Ceramic base material | SiC [55,56], Si3N4 [57], BaTiO3 [58] | High hardness, high-temperature resistance, corrosion resistance, low density [59] |
New generation of absorber | MOF [60,61,62], MXene [63,64], metamaterial [65,66] | Strong designability [65] |
2.1. Impedance Matching and Reflection Loss (RL)
2.2. Electromagnetic Wave Loss Mechanism
2.2.1. Dielectric Loss
2.2.2. Magnetic Loss
2.3. Snoek Limit
3. Magnetic Loss-Type Iron-Based Absorbers
3.1. Morphology Design of Ferromagnetic Particles and Their Absorption Performances
3.1.1. Porous Spherical Absorbers
3.1.2. Lamellar Absorbers
3.1.3. Fiber/Branch-Like Absorbers
3.2. Multi-Interface Coupling and Heterostructure Design and Absorption Performance
3.2.1. Doping Method
3.2.2. Coating Method
Carbon Coating
Metal Coating
Conductive Polymer Coating
Oxide Coating
4. Magnetic Elastomer Composites
4.1. Rubber-Based Composites
4.2. Gel-Based Composites
4.3. Summary
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Balaji Ananth, P.; Abhiram, N.; Hari Krishna, K.; Nisha, M.S. Synthesis of radar absorption material for stealth application. Mater. Today Proc. 2021, 47, 4872–4878. [Google Scholar] [CrossRef]
- Kuś, A.; Massaro, M. Analysing the C-Band spectrum auctions for 5G in Europe: Achieving efficiency and fair decisions in radio spectrum management. Telecommun. Policy 2022, 46, 102286. [Google Scholar] [CrossRef]
- Shu, R.; Nie, L.; Liu, X.; Chen, K. Fabrication of nitrogen-doped reduced graphene oxide/tricobalt tetraoxide composite aerogels with high efficiency, broadband microwave absorption, and good compression recovery performance. J. Mater. Sci. Technol. 2024, 190, 106–116. [Google Scholar] [CrossRef]
- Jia, H.; Duan, Y.; Dou, C.; Niu, L.; Wu, N.; Wang, M. Thermally-driven contraction asymmetric yolk-shell MnSe@C microsphere with boosted dielectric behaviors and microwave absorption. J. Mater. Sci. Technol. 2024, 183, 223–231. [Google Scholar] [CrossRef]
- Zhou, Z.; He, Z.; Yin, S.; Xie, X.; Yuan, W. Adhesive, stretchable and antibacterial hydrogel with external/self-power for flexible sensitive sensor used as human motion detection. Compos. Part B Eng. 2021, 220, 108984. [Google Scholar] [CrossRef]
- Song, H.; Sun, Y.; Zhu, J.; Xu, J.; Zhang, C.; Liu, T. Hydrogen-bonded network enables polyelectrolyte complex hydrogels with high stretchability, excellent fatigue resistance and self-healability for human motion detection. Compos. Part B Eng. 2021, 217, 108901. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Zhao, X.; Zhang, L.; Wang, B.; Nie, A.; Mu, C.; Xiang, J.; Zhai, K.; Xue, T.; et al. Lightweight and multifunctional super-hydrophobic aramid nanofiber/multiwalled carbon nanotubes/Fe3O4 aerogel for microwave absorption, thermal insulation and pollutants adsorption. J. Alloys Compd. 2022, 919, 165792. [Google Scholar] [CrossRef]
- Han, P.; Wu, C.; Tai, J.; Zhang, H.; Zhao, G.; Chen, Q.; Liu, Y. Improved microwave absorption properties of ferrite-rGO composites by covalent bond. J. Alloys Compd. 2023, 966, 171581. [Google Scholar] [CrossRef]
- Yin, P.; Deng, Y.; Zhang, L.; Wu, W.; Wang, J.; Feng, X.; Sun, X.; Li, H.; Tao, Y. One-step hydrothermal synthesis and enhanced microwave absorption properties of Ni0.5Co0.5Fe2O4/graphene composites in low frequency band. Ceram. Int. 2018, 44, 20896–20905. [Google Scholar] [CrossRef]
- Zhao, Z.; Jia, Z.; Wu, H.; Gao, Z.; Zhang, Y.; Kou, K.; Huang, Z.; Feng, A.; Wu, G. Morphology-dependent electromagnetic wave absorbing properties of iron-based absorbers: One-dimensional, two-dimensional, and three-dimensional classification. Eur. Phys. J. Appl. Phys. 2019, 87, 20901. [Google Scholar] [CrossRef]
- Fan, M.; He, Z.; Pang, H. Microwave absorption enhancement of CIP/PANI composites. Synth. Met. 2013, 166, 1–6. [Google Scholar] [CrossRef]
- Sui, M.; Lü, X.; Xie, A.; Xu, W.; Rong, X.; Wu, G. The synthesis of three-dimensional (3D) polydopamine-functioned carbonyl iron powder@polypyrrole (CIP@PPy) aerogel composites for excellent microwave absorption. Synth. Met. 2015, 210, 156–164. [Google Scholar] [CrossRef]
- Yin, P.; Zhang, L.; Wang, J.; Feng, X.; Wang, K.; Rao, H.; Wang, Y.; Dai, J. Low frequency microwave absorption property of CIPs/ZnO/Graphene ternary hybrid prepared via facile high-energy ball milling. Powder Technol. 2019, 356, 325–334. [Google Scholar] [CrossRef]
- Guo, C.; Yang, Z.; Shen, S.; Liang, J.; Xu, G. High microwave attenuation performance of planar carbonyl iron particles with orientation of shape anisotropy field. J. Magn. Magn. Mater. 2018, 454, 32–38. [Google Scholar] [CrossRef]
- Wu, Y.; Han, Y.; Hu, J.; He, N.; He, M.; Guo, H.; Xu, H.; Liu, Z.; Zhang, Y.; Ju, W. Collective orientation of CNT coated magnetic microchains for effective microwave absorption in S and C band. J. Mater. Sci. Technol. 2024, 196, 215–223. [Google Scholar] [CrossRef]
- He, N.; Ju, W.; Hu, J.; Wu, Y.; Zhao, L.; Zhong, X.; Liu, Z. Magnetic needles enable tunable microwave absorption from S to Ku band via collective orientation. J. Alloys Compd. 2024, 979, 173559. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, A.; Wang, C.; Wang, H.; Shen, Y.; Tian, X. Novel rGO/α-Fe2O3 composite hydrogel: Synthesis, characterization and high performance of electromagnetic wave absorption. J. Mater. Chem. A 2013, 1, 8547–8552. [Google Scholar] [CrossRef]
- Wang, W.; Guo, J.; Long, C.; Li, W.; Guan, J. Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption. J. Alloys Compd. 2015, 637, 106–111. [Google Scholar] [CrossRef]
- Li, Y.; Chen, G.; Li, Q.; Qiu, G.; Liu, X. Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite. J. Alloys Compd. 2011, 509, 4104–4107. [Google Scholar] [CrossRef]
- Liang, J.; Wei, Z.; Zhang, X.; Chen, F.; Cao, X.; Li, Z.; Gao, B.; Qi, X.; Tang, S.; Kong, J. Lightweight cementite/Fe anchored in nitrogen-doped carbon with tunable dielectric/magnetic loss and low filler loading achieving high-efficiency microwave absorption. Carbon 2023, 210, 118080. [Google Scholar] [CrossRef]
- Hu, R.; Li, L.; Xu, X.; Pan, D.; Dong, J.; Zhen, C.; Gu, M.D.; Wang, H. Dimensional design of Fe0.9Co0.1 nano-alloys with enhanced low-frequency microwave absorption. Chem. Eng. J. 2024, 482, 148864. [Google Scholar] [CrossRef]
- Deng, H.; Yang, Q.; Zhang, Z.; Wang, C.; Qing, Y. Temperature dependence of the microwave absorption performance of carbonyl iron powder/boron-modified phenolic resin composite coating. Appl. Phys. A 2022, 128, 251. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, L.; Zheng, D.; Liu, L.; Xu, Y. Characteristics of Oxidized Fe Topcoat and Its Effects on the Absorbing Property of Carbonyl Iron Coating. J. Electron. Mater. 2019, 48, 3753–3762. [Google Scholar] [CrossRef]
- Feng, Y.; Qiu, T.; Li, X.; Shen, C. Microwave absorption properties of the carbonyl iron/EPDM radar absorbing materials. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2007, 22, 266–270. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, L.; Zhao, X.; Xiang, J.; Mu, C.; Zhai, K.; Xue, T.; Liu, Z.; Wen, F. Unique dielectric dispersion induced ultra-broadband microwave absorption of tellurium doped black phosphorus nanoflakes/aramid nanofibers/carbonyl iron nanopowders ultra-lightweight aerogel. Ceram. Int. 2023, 49, 30837–30844. [Google Scholar] [CrossRef]
- Lan, D.; Li, H.; Wang, M.; Ren, Y.; Zhang, J.; Zhang, M.; Ouyang, L.; Tang, J.; Wang, Y. Recent advances in construction strategies and multifunctional properties of flexible electromagnetic wave absorbing materials. Mater. Res. Bull. 2024, 171, 112630. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, Z.; Sun, K.; Wang, C.; Zeng, N.; Gao, B.; Tang, X.; Qi, X.; Fan, R. Enhanced electromagnetic wave absorption performance of hematite@carbon nanotubes/polyacrylamide hydrogel composites with good flexibility and biocompatibility. Adv. Compos. Hybrid. Mater. 2023, 6, 173. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Sun, S.; Zhang, X.; Duan, L.; Ge, X.; Lü, W. Self-assembled three-dimensional graphene/Fe3O4 hydrogel for efficient pollutant adsorption and electromagnetic wave absorption. Mater. Res. Bull. 2016, 73, 401–408. [Google Scholar] [CrossRef]
- Kim, D.Y.; Chung, Y.C.; Kang, T.W.; Kim, H.C. Dependence of microwave absorbing property on ferrite volume fraction in MnZn ferrite-rubber composites. IEEE Trans. Magn. 1996, 32, 555–558. [Google Scholar] [CrossRef]
- Janu, Y.; Chauhan, V.S.; Chaudhary, D.; Saini, L.; Patra, M.K. Silica-Coated Iron Microflakes (Fe/SiO2)-Based Elastomeric Composites as Thin Microwave Absorber. IEEE Trans. Magn. 2019, 55, 1–7. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, B.; Sun, J.; Su, X.; Huo, S.; Qu, Z. Efficient Fe3O4@porous carbon microwave absorber constructed from cotton cellulose nanofibers hydrogel. J. Alloys Compd. 2024, 997, 174956. [Google Scholar] [CrossRef]
- Yan, X.; Guo, J.; Jiang, X. The microwave-absorption properties and mechanism of phenyl silicone rubber/CIPs/graphene composites after thermal-aging in an elevated temperature. Sci. Rep. 2022, 12, 4385. [Google Scholar] [CrossRef]
- Prakash, A.; Srivastava, A.K.; Sivasubramanian, R.; Pandey, M.K.; Nagarajan, R.; Bhattacharyya, A. Composition Optimization of Iron-Nickel-Nanographite Particles for Tuning the Electromagnetic Parameters of Silicone Rubber Composites. Arab. J. Sci. Eng. 2023, 48, 8849–8860. [Google Scholar] [CrossRef]
- Cao, M.-S.; Wang, X.-X.; Zhang, M.; Shu, J.-C.; Cao, W.-Q.; Yang, H.-J.; Fang, X.-Y.; Yuan, J. Electromagnetic Response and Energy Conversion for Functions and Devices in Low-Dimensional Materials. Adv. Funct. Mater. 2019, 29, 1807398. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, Z.; Hussain, G.; Zhou, L.; Li, Q.; Ostrikov, K.K. Techniques to enhance magnetic permeability in microwave absorbing materials. Appl. Mater. Today 2020, 19, 100596. [Google Scholar] [CrossRef]
- Van Vleck, J.H. Concerning the Theory of Ferromagnetic Resonance Absorption. Phys. Rev. 1950, 78, 266–274. [Google Scholar] [CrossRef]
- Chen, J.; Liang, X.; Liu, W.; Gu, W.; Zhang, B.; Ji, G. Mesoporous carbon hollow spheres as a light weight microwave absorbing material showing modulating dielectric loss. Dalton Trans. 2019, 48, 10145–10150. [Google Scholar] [CrossRef]
- Sun, H.; Che, R.; You, X.; Jiang, Y.; Yang, Z.; Deng, J.; Qiu, L.; Peng, H. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125. [Google Scholar] [CrossRef]
- Che, W.; Zhao, Y.; Guo, H.; Su, Z.; Liu, T. Sentence compression for aspect-based sentiment analysis. Trans. Audio Speech Lang. Process. 2015, 23, 2111–2124. [Google Scholar] [CrossRef]
- Duan, Y.; Li, Y.; Wang, D.; Wang, R.; Wang, Y.; Hou, L.; Yan, X.; Li, Q.; Yang, W.; Li, Y. Transverse size effect on electromagnetic wave absorption performance of exfoliated thin-layered flake graphite. Carbon 2019, 153, 682–690. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Yan, J.; Huang, Y.; Xia, L.; Guang, Z. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2019, 368, 285–298. [Google Scholar] [CrossRef]
- Zhang, K.-L.; Zhang, J.-Y.; Hou, Z.-L.; Bi, S.; Zhao, Q.-L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617. [Google Scholar] [CrossRef]
- Yang, W.; Jiang, B.; Liu, Z.; Li, R.; Hou, L.; Li, Z.; Duan, Y.; Yan, X.; Yang, F.; Li, Y. Magnetic coupling engineered porous dielectric carbon within ultralow filler loading toward tunable and high-performance microwave absorption. J. Mater. Sci. Technol. 2021, 70, 214–223. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Hong, J.; Cao, J.; Deng, C. A novel Fe(OH)3/g-C3N4 composite membrane for high efficiency water purification. J. Membr. Sci. 2018, 564, 372–381. [Google Scholar] [CrossRef]
- Kuang, D.; Wang, S.; Hou, L.; Luo, H.; Deng, L.; Chen, C.; Song, M.; Mead, J.L.; Huang, H. A comparative study on the dielectric response and microwave absorption performance of FeNi-capped carbon nanotubes and FeNi-cored carbon nanoparticles. Nanotechnology 2020, 32, 105701. [Google Scholar] [CrossRef] [PubMed]
- Zeghina, S.; Wojkiewicz, J.-L.; Lamouri, S.; Belaabed, B.; Redon, N. Enhanced microwave absorbing properties of lightweight films based on polyaniline/aliphatic polyurethane composites in X band. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Xu, F.; Ma, L.; Huo, Q.; Gan, M.; Tang, J. Microwave absorbing properties and structural design of microwave absorbers based on polyaniline and polyaniline/magnetite nanocomposite. J. Magn. Magn. Mater. 2015, 374, 311–316. [Google Scholar] [CrossRef]
- Xu, P.; Han, X.; Wang, C.; Zhao, H.; Wang, J.; Wang, X.; Zhang, B. Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole. J. Phys. Chem. B 2008, 112, 2775–2781. [Google Scholar] [CrossRef]
- Liu, P.-B.; Huang, Y.; Sun, X. Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method. ACS Appl. Mater. Interfaces 2013, 5, 12355–12360. [Google Scholar] [CrossRef]
- Wu, G.; Cheng, Y.; Yang, Z.; Jia, Z.; Wu, H.; Yang, L.; Li, H.; Guo, P.; Lv, H. Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 2018, 333, 519–528. [Google Scholar] [CrossRef]
- Yang, R.-B.; Liang, W.-F. Microwave properties of high-aspect-ratio carbonyl iron/epoxy absorbers. J. Appl. Phys. 2011, 109, 07A311. [Google Scholar] [CrossRef]
- Houbi, A.; Aldashevich, Z.A.; Atassi, Y.; Bagasharova Telmanovna, Z.; Saule, M.; Kubanych, K. Microwave absorbing properties of ferrites and their composites: A review. J. Magn. Magn. Mater. 2021, 529, 167839. [Google Scholar] [CrossRef]
- Feng, L.; Li, W.; Wang, Y. Broadband electromagnetic wave absorbing metamaterial based on FeSiAl alloy. J. Magn. Magn. Mater. 2022, 541, 168510. [Google Scholar] [CrossRef]
- Lv, H.; Ji, G.; Wang, M.; Shang, C.; Zhang, H.; Du, Y. FeCo/ZnO composites with enhancing microwave absorbing properties: Effect of hydrothermal temperature and time. RSC Adv. 2014, 4, 57529–57533. [Google Scholar] [CrossRef]
- Mu, Y.; Zhou, W.; Hu, Y.; Ding, D.; Luo, F.; Qing, Y. Enhanced microwave absorbing properties of 2.5D SiCf/SiC composites fabricated by a modified precursor infiltration and pyrolysis process. J. Alloys Compd. 2015, 637, 261–266. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, H.; Wang, J.; Tang, G. Dielectric properties of the SiC fiber-reinforced SiC matrix composites with the CVD SiC interphases. J. Alloys Compd. 2010, 491, 248–251. [Google Scholar] [CrossRef]
- Luo, H.; Chen, W.; Zhou, W.; Long, L.; Deng, L.; Xiao, P.; Li, Y. Carbon fiber/Si3N4 composites with SiC nanofiber interphase for enhanced microwave absorption properties. Ceram. Int. 2017, 43, 12328–12332. [Google Scholar] [CrossRef]
- Jain, R.K.; Dubey, A.; Soni, A.; Gupta, S.K.; Shami, T.C. Barium titanate flakes based composites for microwave absorbing applications. Process. Appl. Ceram. 2013, 7, 189–193. [Google Scholar] [CrossRef]
- Fu, Z.; Pang, A.; Luo, H.; Zhou, K.; Yang, H. Research progress of ceramic matrix composites for high temperature stealth technology based on multi-scale collaborative design. J. Mater. Res. Technol. 2022, 18, 2770–2783. [Google Scholar] [CrossRef]
- Feng, W.; Liu, Y.; Bi, Y.; Su, X.; Lu, C.; Han, X.; Ma, Y.; Feng, C.; Ma, M. Recent advancement of magnetic MOF composites in microwave absorption. Synth. Met. 2023, 294, 117307. [Google Scholar] [CrossRef]
- Huang, M.; Zhao, K.; Liu, S.; Bian, A.; Jiang, L.; He, D.; He, J.; Wang, Y. MOF derived α-Fe2O3/Ti3C2Tx magnetic-dielectric composites for microwave absorption. J. Phys. Chem. Solids 2024, 188, 111893. [Google Scholar] [CrossRef]
- Wei, H.; Tian, Y.; Chen, Q.; Estevez, D.; Xu, P.; Peng, H.-X.; Qin, F. Microwave absorption performance of 2D Iron-Quinoid MOF. Chem. Eng. J. 2021, 405, 126637. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, X.; Zhang, X.; Wu, G.; Rong, X.; Wang, X. TiO2 Nanosheets/Ti3C2Tx MXene 2D/2D Composites for Excellent Microwave Absorption. ACS Appl. Nano Mater. 2023, 6, 14421–14430. [Google Scholar] [CrossRef]
- Huang, B.; Zhou, Z.; Wei, L.; Song, Q.; Yu, W.; Zhou, Y.; Hu, R.; Zhang, W.; Lu, C. Ti3C2Tx MXene as a novel functional photo blocker for stereolithographic 3D printing of multifunctional gels via Continuous Liquid Interface Production. Compos. Part B Eng. 2021, 225, 109261. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Chen, X.; Wu, Z.; He, Y.; Lv, Y.; Zou, Y. Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band. J. Magn. Magn. Mater. 2020, 497, 166075. [Google Scholar] [CrossRef]
- Huang, L.; Duan, Y.; Yang, X.; Gao, S.; Zeng, Y.; Ma, G.; Zhang, W. Ultra-flexible composite metamaterials with enhanced and tunable microwave absorption performance. Compos. Struct. 2019, 229, 111469. [Google Scholar] [CrossRef]
- Xia, L.; Feng, Y.; Zhao, B. Intrinsic mechanism and multiphysics analysis of electromagnetic wave absorbing materials: New horizons and breakthrough. J. Mater. Sci. Technol. 2022, 130, 136–156. [Google Scholar] [CrossRef]
- Li, H.; Wu, A.; Cao, T.; Huang, H. The absorption mechanism for magnetic waves and research progress on carbon-coated magnetic nanoparticles. New Carbon Mater. 2022, 37, 695–706. [Google Scholar] [CrossRef]
- Ma, Z.; Cao, C.-T.; Liu, Q.-F.; Wang, J.-B. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers. Chin. Phys. Lett. 2012, 29, 038401. [Google Scholar] [CrossRef]
- Qin, M.; Zhang, L.; Wu, H. Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials. Adv. Sci. 2022, 9, 2105553. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Xu, D.; Wang, Z.; Wang, F.; Liu, J.; Liu, W.; Shao, Q.; Liu, H.; Gao, Q.; Guo, Z. Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 2019, 145, 433–444. [Google Scholar] [CrossRef]
- Ning, M.; Lei, Z.; Tan, G.; Man, Q.; Li, J.; Li, R.-W. Dumbbell-Like Fe3O4@N-Doped Carbon@2H/1T-MoS2 with Tailored Magnetic and Dielectric Loss for Efficient Microwave Absorbing. ACS Appl. Mater. Interfaces 2021, 13, 47061–47071. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Zhang, G.; Huang, Y.; Zhang, R.; Liu, X.; Zhang, X.; Che, R. Hierarchical Engineering of Double-Shelled Nanotubes toward Hetero-Interfaces Induced Polarization and Microscale Magnetic Interaction. Adv. Funct. Mater. 2022, 32, 2202588. [Google Scholar] [CrossRef]
- Li, W.; Gao, M.; Miao, Y.; Wang, X. Recent progress in increasing the electromagnetic wave absorption of carbon-based materials. New Carbon Mater. 2023, 38, 111–125. [Google Scholar] [CrossRef]
- Zou, Y.; Huang, X.; Fan, B.; Yue, J.; Liu, Y. Enhanced low-frequency microwave absorption performance of FeNi alloy coated carbon foam assisted by SiO2 layer. Appl. Surf. Sci. 2022, 600, 154046. [Google Scholar] [CrossRef]
- Guo, Y.; Ruan, K.; Wang, G.; Gu, J. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Xin, Z.; Zhang, M.; Sun, X. Facile synthesis of yolk-shell pompon-like Fe@void@CeO2@Ni nanospheres with enhanced microwave absorption properties. Appl. Surf. Sci. 2023, 613, 155873. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, Z.; Zhang, Y.; Wu, G. Construction of 3D conductive network by flower-like V2O3 synergy with magnetic NiCo for superior electromagnetic wave absorption performance. Mater. Today Phys. 2022, 29, 100902. [Google Scholar] [CrossRef]
- Liang, H.; Xing, H.; Qin, M.; Wu, H. Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105959. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.; Yuan, Y.; Sun, X.; Shao, W.; Zhen, L.; Jiang, J. Reduced graphene oxide-wrapped Fe–Fe3O4@mSiO2 hollow core–shell composites with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 2022, 10, 15620–15628. [Google Scholar] [CrossRef]
- Snoek, J.L. Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s. Physica 1948, 14, 207–217. [Google Scholar] [CrossRef]
- Zheng, W.; Ye, W.; Yang, P.; Wang, D.; Xiong, Y.; Liu, Z.; Qi, J.; Zhang, Y. Recent Progress in Iron-Based Microwave Absorbing Composites: A Review and Prospective. Molecules 2022, 27, 4117. [Google Scholar] [CrossRef] [PubMed]
- Tong, G.-X.; Wu, W.-H.; Hu, Q.; Yuan, J.-H.; Qiao, R.; Qian, H.-S. Enhanced electromagnetic characteristics of porous iron particles made by a facile corrosion technique. Mater. Chem. Phys. 2012, 132, 563–569. [Google Scholar] [CrossRef]
- Sista, K.S.; Dwarapudi, S.; Kumar, D.; Sinha, G.R.; Moon, A.P. Carbonyl iron powders as absorption material for microwave interference shielding: A review. J. Alloys Compd. 2021, 853, 157251. [Google Scholar] [CrossRef]
- Wen, F.; Zuo, W.; Yi, H.; Wang, N.; Qiao, L.; Li, F. Microwave-absorbing properties of shape-optimized carbonyl iron particles with maximum microwave permeability. Phys. B Condens. Matter 2009, 404, 3567–3570. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, Z.; Zhou, L.; Heidarshenas, B.; Zhang, C.; Xia, J.; Zhi, L.; Shen, G.; Wu, H. Influence of heat treatment on the microwave absorption properties of flaky carbonyl iron powder. Int. J. Lightweight Mater. Manuf. 2020, 3, 258–264. [Google Scholar] [CrossRef]
- Zhang, B.; Feng, Y.; Xiong, J.; Yang, Y.; Lu, H. Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2–18 GHz. IEEE Trans. Magn. 2006, 42, 1778–1781. [Google Scholar] [CrossRef]
- He, J.; Wang, W.; Wang, A.; Guan, J. Electromagnetic parameters and microwave-absorption properties for the mixtures of mechanically milled spherical and flaky carbonyl iron powders. Acta Metall. Sin. (Engl. Lett.) 2012, 25, 201–206. [Google Scholar] [CrossRef]
- Li, X.; Guo, X.; Liu, T.; Zheng, X.; Bai, J. Shape-controlled synthesis of Fe nanostructures and their enhanced microwave absorption properties at L-band. Mater. Res. Bull. 2014, 59, 137–141. [Google Scholar] [CrossRef]
- Shen, J.; Yao, Y.; Liu, Y.; Leng, J. Tunable hierarchical Fe nanowires with a facile template-free approach for enhanced microwave absorption performance. J. Mater. Chem. C 2016, 4, 7614–7621. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, Z.; Zhang, N.; Wang, Z.; Li, C.; Han, X.; Wu, X.; Jiang, Z. Electric field-induced synthesis of dendritic nanostructured α-Fe for electromagnetic absorption application. J. Mater. Chem.A 2013, 1, 4571–4576. [Google Scholar] [CrossRef]
- Sun, G.; Dong, B.; Cao, M.; Wei, B.; Hu, C. Hierarchical Dendrite-Like Magnetic Materials of Fe3O4, γ-Fe2O3, and Fe with High Performance of Microwave Absorption. Chem. Mater. 2011, 23, 1587–1593. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, F.; Kou, S.; Ye, F.; Xue, J.; Fan, X.; Fan, S.; Cheng, L. Enhanced microwave absorption properties of Fe-doped SiOC ceramics by the magnetic-dielectric loss properties. Ceram. Int. 2021, 47, 24393–24402. [Google Scholar] [CrossRef]
- Wang, X.; You, F.; Wen, X.; Wang, K.; Tong, G.; Wu, W. Doping Ce(OH)CO3 laminated dendrites with Fe, Co and Ni for defect steered wide-frequency microwave absorption. Chem. Eng. J. 2022, 445, 136431. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, S.; Peng, K. Magnetic properties regulation and loss contribution analysis of FeSi soft magnetic composites doped by carbonyl iron powders. J. Magn. Magn. Mater. 2023, 568, 170423. [Google Scholar] [CrossRef]
- Tian, N.; You, C.Y.; Liu, J.; Qu, F.; Wang, C.H.; Lu, Z.X. Electromagnetic microwave absorption of Fe–Si flakes with different mixtures. J. Magn. Magn. Mater. 2013, 339, 114–118. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Jia, Z.; Ling, M.; Yan, Y.; Chai, L.; Du, H.; Wu, G. In situ constructed honeycomb-like NiFe2O4@Ni@C composites as efficient electromagnetic wave absorber. J. Colloid Interface Sci. 2022, 608, 2849–2859. [Google Scholar] [CrossRef]
- Qu, B.; Zhu, C.; Li, C.; Zhang, X.; Chen, Y. Coupling Hollow Fe3O4–Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material. ACS Appl. Mater. Interfaces 2016, 8, 3730–3735. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.-Y.; Hou, Y.-L.; Meng, W.-J.; Wang, Y.-Q.; Yang, X.-X.; Ren, M.-X.; Zhao, D.-L. Hierarchical bath lily-like hollow microspheres constructed by graphene and Fe3O4 nanoparticles with enhanced broadband and highly efficient low-frequency microwave absorption. Carbon 2022, 196, 280–289. [Google Scholar] [CrossRef]
- Xu, H.; Yin, X.; Zhu, M.; Han, M.; Hou, Z.; Li, X.; Zhang, L.; Cheng, L. Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption. ACS Appl. Mater. Interfaces 2017, 9, 6332–6341. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Yang, Y.; Le, K.; Wang, G.; Ouyang, A.; Li, B.; Liu, W.; Wu, L.; Wang, Z.; Liu, J.; et al. Bifunctional Cu9S5/C octahedral composites for electromagnetic wave absorption and supercapacitor applications. Chem. Eng. J. 2021, 417, 129350. [Google Scholar] [CrossRef]
- Yang, P.-A.; Huang, Y.; Li, R.; Huang, X.; Ruan, H.; Shou, M.; Li, W.; Zhang, Y.; Li, N.; Dong, L. Optimization of Fe@Ag core–shell nanowires with improved impedance matching and microwave absorption properties. Chem. Eng. J. 2022, 430, 132878. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Jin, K.; Wang, C.; Guo, W.; Tian, K.; Wang, H. Enduring effect mechanism of Co(Ni) layers on excellent microwave absorption performance of carbonyl iron in seawater. J. Magn. Magn. Mater. 2022, 564, 170202. [Google Scholar] [CrossRef]
- Preparation and excellent electromagnetic absorption properties of dendritic structured Fe3O4@PANI composites. J. Alloys Compd. 2022, 891, 161922. [CrossRef]
- Tian, X.; Xu, X.; Bo, G.; Su, X.; Yan, J.; Yan, Y. A 3D flower-like Fe3O4@PPy composite with core-shell heterostructure as a lightweight and efficient microwave absorbent. J. Alloys Compd. 2022, 923, 166416. [Google Scholar] [CrossRef]
- Kuchi, R.; Dongquoc, V.; Cao Van, P.; Kim, D.; Jeong, J.-R. Synthesis of porous Fe3O4-SnO2 core-void-shell nanocomposites as high-performance microwave absorbers. J. Environ. Chem. Eng. 2021, 9, 106585. [Google Scholar] [CrossRef]
- Yang, R.; Ma, Z.; Wu, Z.; Wang, M.; Zhong, L.; Tang, J.; Song, T.; Zhou, T. Enhancing broadband and intense microwave absorption properties of flaky FeSiCr powder by coating SiO2. Ceram. Int. 2023, 49, 23975–23984. [Google Scholar] [CrossRef]
- Facile synthesis of FeCo–MnO2 core–shell nanoparticles as high-frequency microwave absorbers using a two-step method. Appl. Surf. Sci. 2023, 613, 155976. [CrossRef]
- Min, D.; Zhou, W.; Luo, F.; Zhu, D. Facile preparation and enhanced microwave absorption properties of flake carbonyl iron/Fe3O4 composite. J. Magn. Magn. Mater. 2017, 435, 26–32. [Google Scholar] [CrossRef]
- Zhou, L.; Yan, J.; Huang, J.; Wang, H.; Wang, X.; Wang, Z. Dielectric and microwave absorption properties of FeSiAl/Al2O3 composites containing FeSiAl particles of different sizes. Ceram. Int. 2021, 47, 7831–7836. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, F.; Xu, H.; Tian, W.; Pan, Y.; Mahmood, N.; Jian, X. Plasma-enhanced interfacial engineering of FeSiAl@PUA@SiO2 hybrid for efficient microwave absorption and anti-corrosion. Nano Res. 2023, 16, 645–653. [Google Scholar] [CrossRef]
- Jiang, X.; Wan, W.; Wang, B.; Zhang, L.; Yin, L.; Van Bui, H.; Xie, J.; Zhang, L.; Lu, H.; Deng, L. Enhanced anti-corrosion and microwave absorption performance with carbonyl iron modified by organic fluorinated chemicals. Appl. Surf. Sci. 2022, 572, 151320. [Google Scholar] [CrossRef]
- Li, K.; Ge, J.; Zhang, D.; Zhao, R.; Wu, C.; Cheng, Z.; Xie, Z.; Liu, Y. “Dual-armor” strategy to prepare multifunctional carbonyl iron particle with corrosion resistance, self-healing and high microwave absorbing performances. Compos. Sci. Technol. 2024, 255, 110699. [Google Scholar] [CrossRef]
- Rezazadeh, N.; Kianvash, A.; Palmeh, P. Microwave absorption properties of double-layer nanocomposites based on polypyrrole/natural rubber. J. Appl. Polym. Sci. 2018, 135, 46565. [Google Scholar] [CrossRef]
- Rezazadeh, N.; Rezazadeh, J. Fabrication of ultra-thin, hydrophobic and flexible electromagnetic wave absorber sheets based on nano-carbon/carbonyl iron in a polypyrrole/silicone rubber matrix. J. Magn. Magn. Mater. 2019, 475, 201–204. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Pang, Y.; Wang, X.; Bai, B.; Zhang, W.; Luo, C.; Liu, W.; Zhang, L. Polyimide composite aerogels towards highly efficient microwave absorption and thermal insulation. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107112. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, J.; Gu, W.; Zhao, H.; Zheng, J.; Zhang, B.; Ji, G. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 2020, 395, 125190. [Google Scholar] [CrossRef]
- Xie, C.; He, L.; Shi, Y.; Guo, Z.-X.; Qiu, T.; Tuo, X. From Monomers to a Lasagna-like Aerogel Monolith: An Assembling Strategy for Aramid Nanofibers. ACS Nano 2019, 13, 7811–7824. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Song, P.; You, B.; Sun, G. Double-cross-linking strategy for preparing flexible, robust, and multifunctional polyimide aerogel. Chem. Eng. J. 2020, 381, 122784. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Zhang, T.; Chang, H.; Xiao, P.; Chen, H.; Huang, Z.; Chen, Y. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, X.; Liu, Z.; Zhang, H.-B.; Yu, Z.-Z. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B Eng. 2020, 200, 108263. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Y.; Qu, Z.; Wang, W.; Yu, D. Anisotropic, multifunctional and lightweight CNTs@CoFe2O4/polyimide aerogels for high efficient electromagnetic wave absorption and thermal insulation. Chem. Eng. J. 2022, 442, 136388. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, L.; Wu, H. Hydro/Organo/Ionogels: “Controllable” Electromagnetic Wave Absorbers. Adv. Mater. 2022, 34, 2205376. [Google Scholar] [CrossRef]
- Cai, J.; Zhao, H.; Liu, H.; Wei, Y.; Zheng, Z.; Zhang, C.; Xiao, L.; Zhao, R.; Hou, L. Magnetic field vertically aligned Co-MOF-74 derivatives/polyacrylamide hydrogels with bifunction of excellent electromagnetic wave absorption and efficient thermal conduction performances. Compos. Part A Appl. Sci. Manuf. 2024, 176, 107832. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Liu, N.; Lu, Z. Recent Progress of Iron-Based Magnetic Absorbers and Its Applications in Elastomers: A Review. Materials 2024, 17, 4058. https://doi.org/10.3390/ma17164058
Xu W, Liu N, Lu Z. Recent Progress of Iron-Based Magnetic Absorbers and Its Applications in Elastomers: A Review. Materials. 2024; 17(16):4058. https://doi.org/10.3390/ma17164058
Chicago/Turabian StyleXu, Wanting, Na Liu, and Zhongchen Lu. 2024. "Recent Progress of Iron-Based Magnetic Absorbers and Its Applications in Elastomers: A Review" Materials 17, no. 16: 4058. https://doi.org/10.3390/ma17164058
APA StyleXu, W., Liu, N., & Lu, Z. (2024). Recent Progress of Iron-Based Magnetic Absorbers and Its Applications in Elastomers: A Review. Materials, 17(16), 4058. https://doi.org/10.3390/ma17164058