Activated Carbon for CO2 Adsorption from Avocado Seeds Activated with NaOH: The Significance of the Production Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Activated Carbon Synthesis
2.3. Sample Characterization
3. Results and Discussion
3.1. Materials Characterization
- 4 NaOH + C → 4 Na + CO2 + 2 H2O
- 6 NaOH + 2 C → 2 Na + 3 H2 + Na2CO3
- 4 NaOH + 2 CO2 → 2 Na2CO3 + 2 H2O
- Na2CO3 → Na2O + CO2
- 4 Na2O + C → 4 Na + CO2
- 4 NaOH + C → Na2CO3 + Na2O+ 2 H2
- Na2CO3 +2 C→ 2 Na + 3 CO
- C + CO2 ⇄ 2 CO
3.2. Studies on C500_NaOHdry as Potential CO2 Adsorbent
- qmRP—the maximum adsorption capacity [mmol/g];
- bRP—the Radke–Prausnitz constant [bar−1];
- nRP—Radke–Prausnitz model exponent.
- qmT—the maximum adsorption capacity [mmol/g];
- bT—the Toth constant [bar−1];
- nT—the heterogeneity factor.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Yuan, X.; Deng, S.; Zhao, L.; Lee, K.B. A Review on Biomass-Derived CO2 Adsorption Capture: Adsorbent, Adsorber, Adsorption, and Advice. Renew. Sustain. Energy Rev. 2021, 152, 111708. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Ji, N.; Deng, S.; Zhao, J.; Li, Y.; Song, Y.; Li, H. Alternative Pathways for Efficient CO2 Capture by Hybrid Processes—A Review. Renew. Sustain. Energy Rev. 2018, 82, 215–231. [Google Scholar] [CrossRef]
- Vannak, H.; Osaka, Y.; Tsujiguchi, T.; Kodama, A. The Efficacy of Carbon Molecular Sieve and Solid Amine for CO2 Separation from a Simulated Wet Flue Gas by an Internally Heated/Cooled Temperature Swing Adsorption Process. Appl. Therm. Eng. 2024, 239, 122145. [Google Scholar] [CrossRef]
- Wei, R.; Alshahrani, T.; Chen, B.; Ibragimov, A.B.; Xu, H.; Gao, J. Advances in Porous Materials for Efficient Separation and Purification of Flue Gas. Sep. Purif. Technol. 2024, 352, 128238. [Google Scholar] [CrossRef]
- Rahimi, V.; Ferreiro-Salgado, A.; Gómez-Díaz, D.; Sonia Freire, M.; González-Álvarez, J. Evaluating the Performance of Carbon-Based Adsorbents Fabricated from Renewable Biomass Precursors for Post-Combustion CO2 Capture. Sep. Purif. Technol. 2024, 344, 127110. [Google Scholar] [CrossRef]
- Tang, D.; Lyu, X.; Huang, Z.; Xu, R.; Chen, J.; Qiu, T. Nitrogen-Doped Microporous Carbons as Highly Efficient Adsorbents for CO2 and Hg(II) Capture. Powder Technol. 2023, 427, 118769. [Google Scholar] [CrossRef]
- Dindi, A.; Quang, D.V.; Vega, L.F.; Nashef, E.; Abu-Zahra, M.R.M. Applications of Fly Ash for CO2 Capture, Utilization, and Storage. J. CO2 Util. 2019, 29, 82–102. [Google Scholar] [CrossRef]
- Xie, W.; Yao, X.; Li, H.; Li, H.; He, L. Biomass-Based N-Rich Porous Carbon Materials for CO2 Capture and In-situ Conversion. ChemSusChem 2022, 15, e202201004. [Google Scholar] [CrossRef]
- Sayari, A.; Belmabkhout, Y.; Serna-Guerrero, R. Flue Gas Treatment via CO2 Adsorption. Chem. Eng. J. 2011, 171, 760–774. [Google Scholar] [CrossRef]
- Sun, N.; Tang, Z.; Wei, W.; Snape, C.E.; Sun, Y. Solid Adsorbents for Low-Temperature CO2 Capture with Low-Energy Penalties Leading to More Effective Integrated Solutions for Power Generation and Industrial Processes. Front. Energy Res. 2015, 3, 9. [Google Scholar] [CrossRef]
- Ochedi, F.O.; Liu, Y.; Adewuyi, Y.G. State-of-the-Art Review on Capture of CO2 Using Adsorbents Prepared from Waste Materials. Process Saf. Environ. Prot. 2020, 139, 1–25. [Google Scholar] [CrossRef]
- Aghel, B.; Behaein, S.; Alobaid, F. CO2 Capture from Biogas by Biomass-Based Adsorbents: A Review. Fuel 2022, 328, 125276. [Google Scholar] [CrossRef]
- Kiełbasa, K.; Bayar, Ş.; Varol, E.A.; Sreńscek-Nazzal, J.; Bosacka, M.; Miądlicki, P.; Serafin, J.; Wróbel, R.J.; Michalkiewicz, B. Carbon Dioxide Adsorption over Activated Carbons Produced from Molasses Using H2SO4, H3PO4, HCl, NaOH, and KOH as Activating Agents. Molecules 2022, 27, 7467. [Google Scholar] [CrossRef]
- Nurfarhana, M.M.; Asikin-Mijan, N.; Yusoff, S.F.M. Porous Carbon from Natural Rubber for CO2 Adsorption. Mater. Chem. Phys. 2023, 308, 128196. [Google Scholar] [CrossRef]
- Dehkordi, S.S.R.; Delavar, Q.; Ebrahim, H.A.; Partash, S.S. CO2 Adsorption by Coal-Based Activated Carbon Modified with Sodium Hydroxide. Mater. Today Commun. 2022, 33, 104776. [Google Scholar] [CrossRef]
- Ma, J.; Liu, Y.; Chen, S.; Du, Y.; Wu, H. Changes in the Pore Structure of Modified Sludge-Activated Carbon and Its Effect on the Adsorption Characteristics of CO2 under High Pressure. Microporous Mesoporous Mater. 2022, 345, 112255. [Google Scholar] [CrossRef]
- Jha, R.K.; Bhunia, H.; Basu, S. Experimental Kinetics and Thermodynamics Investigation: Chemically Activated Carbon-Enriched Monolithic Reduced Graphene Oxide for Efficient CO2 Capture. Heliyon 2024, 10, e27439. [Google Scholar] [CrossRef]
- Tahmasebpoor, M.; Iranvandi, M.; Heidari, M.; Azimi, B.; Pevida, C. Development of Novel Waste Tea-Derived Activated Carbon Promoted with SiO2 Nanoparticles as Highly Robust and Easily Fluidizable Sorbent for Low-Temperature CO2 Capture. J. Environ. Chem. Eng. 2023, 11, 110437. [Google Scholar] [CrossRef]
- Singh, S.B.; De, M. Carbon Dioxide Removal by Chemically and Thermally Reduced Graphene-Based Adsorbents. Korean J. Chem. Eng. 2024, 41, 783–796. [Google Scholar] [CrossRef]
- Avellaneda, G.L.; Denoyel, R.; Beurroies, I. CO2/H2O Adsorption and Co-Adsorption on Functionalized and Modified Mesoporous Silicas. Microporous Mesoporous Mater. 2024, 363, 112801. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Domínguez, M.P.; Araus, K.; Bonert, P.; Sánchez, F.; San Miguel, G.; Toledo, M. The Avocado and Its Waste: An Approach of Fuel Potential/Application. In Environment, Energy and Climate Change II; Springer: Cham, Switzerland, 2014; pp. 199–223. [Google Scholar]
- Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the Bet Equation Applicable to Microporous Adsorbents? Stud. Surf. Sci. Catal. 2007, 160, 49–56. [Google Scholar]
- Cullity, B.D.; Weymouth, J.W. Elements of X-ray Diffraction. Am. J. Phys. 1957, 25, 394–395. [Google Scholar] [CrossRef]
- Lu, L.; Sahajwalla, V.; Kong, C.; Harris, D. Quantitative X-ray Diffraction Analysis and Its Application to Various Coals. Carbon 2001, 39, 1821–1833. [Google Scholar] [CrossRef]
- Singh, G.; Tiburcius, S.; Ruban, S.M.; Shanbhag, D.; Sathish, C.I.; Ramadass, K.; Vinu, A. Pure and Strontium Carbonate Nanoparticles Functionalized Microporous Carbons with High Specific Surface Areas Derived from Chitosan for CO2 Adsorption. Emergent Mater. 2019, 2, 337–349. [Google Scholar] [CrossRef]
- Serafin, J.; Sreńscek-Nazzal, J.; Kamińska, A.; Paszkiewicz, O.; Michalkiewicz, B. Management of Surgical Mask Waste to Activated Carbons for CO2 Capture. J. CO2 Util. 2022, 59, 101970. [Google Scholar] [CrossRef]
- Elmorsi, T.M. Equilibrium Isotherms and Kinetic Studies of Removal of Methylene Blue Dye by Adsorption onto Miswak Leaves as a Natural Adsorbent. J. Environ. Prot. 2011, 2, 817–827. [Google Scholar] [CrossRef]
- Travis, C.C.; Etnier, E.L. A Survey of Sorption Relationships for Reactive Solutes in Soil. J. Environ. Qual. 1981, 10, 8–17. [Google Scholar] [CrossRef]
- Ayawei, N.; Angaye, S.S.; Wankasi, D.; Dikio, E.D. Synthesis, Characterization and Application of Mg/Al Layered Double Hydroxide for the Degradation of Congo Red in Aqueous Solution. Open J. Phys. Chem. 2015, 5, 56–70. [Google Scholar] [CrossRef]
- Podder, M.S.; Majumder, C.B. Studies on the Removal of As(III) and As(V) through Their Adsorption onto Granular Activated Carbon/MnFe2O4 Composite: Isotherm Studies and Error Analysis. Compos. Interfaces 2016, 23, 327–372. [Google Scholar] [CrossRef]
- Tran, H.N.; Bollinger, J.-C.; Lima, E.C.; Juang, R.-S. How to Avoid Mistakes in Treating Adsorption Isotherm Data (Liquid and Solid Phases): Some Comments about Correctly Using Radke-Prausnitz Nonlinear Model and Langmuir Equilibrium Constant. J. Environ. Manag. 2023, 325, 116475. [Google Scholar] [CrossRef]
- Kumar, K.V.; Porkodi, K.; Rocha, F. Comparison of Various Error Functions in Predicting the Optimum Isotherm by Linear and Non-Linear Regression Analysis for the Sorption of Basic Red 9 by Activated Carbon. J. Hazard. Mater. 2008, 150, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Sapchenko, S.A.; Barsukova, M.O.; Belosludov, R.V.; Kovalenko, K.A.; Samsonenko, D.G.; Poryvaev, A.S.; Sheveleva, A.M.; Fedin, M.V.; Bogomyakov, A.S.; Dybtsev, D.N.; et al. Understanding Hysteresis in Carbon Dioxide Sorption in Porous Metal–Organic Frameworks. Inorg. Chem. 2019, 58, 6811–6820. [Google Scholar] [CrossRef] [PubMed]
Sorbent | Method of Preparation | SSA (m2/g) Vtot (cm3/g) | qCO2_ (mmol/g) | t (°C) p (bar) | Ref. |
---|---|---|---|---|---|
AC from natural rubber | carbonized at 400 °C; mixed with solid NaOH at ratios ranging from 1:1 to 1:4 (natural rubber to NaOH); activation at 800 °C | 1670 m2/g 1.01 cm3/g | 2.98 | 25 1 | [14] |
AC from coal | impregnation with NaOH solutions concentrations (0.01–8 M), durations (4–7 h). | 614 m2/g | 1.68 | 25 2.12 | [15] |
AC from sludge | treating with a 5 wt % NaOH solution for 24 h; washing with water until the pH was neutral. | 101 m2/g 0.123 cm3/g | 2.90 | 30 40 | [16] |
AC from monolithic graphene oxides | mixed with NaOH at ratios ranging from 1 to 3; carbonized at 600 °C; washing with water until the pH was neutral. | 754 m2/g 1.97 cm3/g | 2.10 | 25 1 | [17] |
AC from waste tea | impregnation with solution of NaOH (mas ratio 1:1); carbonized at 600 °C; washing with water until the pH was neutral. | 270 m2/g 0.106 cm3/g | 0.96 | 25 1 | [18] |
Graphene-hydrazine | graphite oxide was treated by hydrazine hydrate at a temperature of 90 °C | 409 m2/g 0.48 cm3/g | 1.44 | 0 1 | [19] |
SBA-15 midified by BTESE | TEOS was replaced by 10% of 3-(triethoxysilyl) propylamine. | 269 m2/g 0.36 cm3/g | 1.21 | 30 1 | [20] |
C500_NaOH | avocado seeds powder → furnace 500 °C → NaOH solution → furnace 850 °C |
C500_NaOHdry | avocado seeds powder → furnace 500 °C → NaOH dry → furnace 850 °C |
C_NaOH | avocado seeds powder +NaOH solution → furnace 850 °C |
C_NaOHdry | avocado seeds powder +NaOH dry → furnace 850 °C |
C_NaOHdry+H2O | avocado seeds powder +NaOH dry + few drops of H2O → furnace 850 °C |
AC | SSA | Vtot | Vmicro | Vmicro/tot |
---|---|---|---|---|
(m2/g) | (cm3/g) | (cm3/g) | (%) | |
C_NaOH | 918 | 0.574 | 0.295 | 51.39 |
C_NaOHdry | 700 | 0.716 | 0.159 | 22.21 |
C_NaOHdry+H2O | 696 | 0.761 | 0.168 | 22.08 |
C500_NaOH | 885 | 0.440 | 0.290 | 65.91 |
C500_NaOHdry | 1217 | 0.547 | 0.418 | 76.42 |
AC | Lc | N | La |
---|---|---|---|
(nm) | (nm) | ||
C_NaOH | 1.04 | 2.71 | 2.39 |
C_NaOHdry | 1.23 | 3.27 | 4.10 |
C_NaOHdry+H2O | 1.23 | 3.30 | 3.69 |
C500_NaOH | 0.88 | 2.29 | 3.45 |
C500_NaOHdry | 1.04 | 2.71 | 2.39 |
AC | qCO2_0 °C | qCO2_10 °C | qCO2_20 °C | qCO2_30 °C | qN2_20 °C | Seq |
---|---|---|---|---|---|---|
(mmol/g) | (mmol/g) | (mmol/g) | (mmol/g) | (mmol/g) | ||
C_NaOH | 3.69 | 3.07 | 2.57 | 2.12 | 0.38 | 6.76 |
C_NaOHdry | 2.37 | 2.10 | 1.69 | 1.19 | 0.21 | 8.05 |
C_NaOHdry+H2O | 2.56 | 2.16 | 1.64 | 1.21 | 0.21 | 7.81 |
C500_NaOH | 4.20 | 3.50 | 2.96 | 2.46 | 0.37 | 8.00 |
C500_NaOHdry | 4.90 | 4.00 | 3.37 | 2.76 | 0.50 | 6.84 |
Radke–Prausnitz Model for CO2 | Toth Model for N2 | |||||
---|---|---|---|---|---|---|
Temperature [°C] | ||||||
0 | 10 | 20 | 30 | 20 | ||
qmRP | 5.76 | 5.01 | 4.39 | 3.83 | qmT | 3.01 |
bRP | 5.81 | 4.39 | 3.33 | 2.61 | bT | 0.21 |
nRP | 0.59 | 0.59 | 0.59 | 0.6 | nT | 0.90 |
HYBRID | 0.00103 | 0.00078 | 0.00028 | 0.00081 | HYBRID | 0.00011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siemak, J.; Mikołajczak, G.; Pol-Szyszko, M.; Michalkiewicz, B. Activated Carbon for CO2 Adsorption from Avocado Seeds Activated with NaOH: The Significance of the Production Method. Materials 2024, 17, 4157. https://doi.org/10.3390/ma17164157
Siemak J, Mikołajczak G, Pol-Szyszko M, Michalkiewicz B. Activated Carbon for CO2 Adsorption from Avocado Seeds Activated with NaOH: The Significance of the Production Method. Materials. 2024; 17(16):4157. https://doi.org/10.3390/ma17164157
Chicago/Turabian StyleSiemak, Joanna, Grzegorz Mikołajczak, Magdalena Pol-Szyszko, and Beata Michalkiewicz. 2024. "Activated Carbon for CO2 Adsorption from Avocado Seeds Activated with NaOH: The Significance of the Production Method" Materials 17, no. 16: 4157. https://doi.org/10.3390/ma17164157
APA StyleSiemak, J., Mikołajczak, G., Pol-Szyszko, M., & Michalkiewicz, B. (2024). Activated Carbon for CO2 Adsorption from Avocado Seeds Activated with NaOH: The Significance of the Production Method. Materials, 17(16), 4157. https://doi.org/10.3390/ma17164157