Optimization and Analysis of Refill Friction Stir Spot Welding (RFSSW) Parameters of Dissimilar Aluminum Alloy Joints by FE and ANN Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology of the Welding Process
2.2. Temperature Measurement
2.3. Finite Element Modeling
- -
- Heat transfer equation during the RFSSW process
- -
- The equation for calculating the heat generation rate resulting from the dissipation of plastic energy is
- -
- To determine the heat generated by friction between the tool surfaces and the workpiece:
- -
- The equation for convective heat dissipation is:
- -
- The equation for radiation heat dissipation is:
3. Results and Discussion
3.1. Thermomechanical Results of RFSSW Process
3.1.1. Temperature Distribution
3.1.2. Mechanical Behavior during RFSSW Process
3.2. Neural Networks Applied for Predictive Parameters Analysis
- Retention time: It was changed in steps of 0.1 s, in the interval 1 ÷ 1.2 s, obtaining 3 situations.
- Pin penetration depth: This has been modified according to the values of 0.8, 0.85, 0.9, and 0.95 mm.
- Pin rotation speed: This was varied in the range of 2400 ÷ 3200 rpm, in steps of 200 rpm, obtaining 5 distinct situations.
- The relative position of the two materials: Two situations were considered. In the first situation, the material with higher hardness was positioned at the top so that it came into contact with the pin, while in the second situation, the material with lower hardness was positioned at the top.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schilling, C.; Dos Santos, J. Method and Device for Joining at Least Two at Joining Work Pieces by Friction Welding. U.S. Patent 0179 682, 5 December 2002. [Google Scholar]
- Birsan, D.C.; Paunoiu, V.; Teodor, V.G. Neural networks applied for predictive parameters analysis of the refill friction stir spot welding process of 6061-T6 aluminum alloy plates. Materials 2023, 16, 4519. [Google Scholar] [CrossRef] [PubMed]
- Harachai, K.; Prasomthong, S. Investigation of the optimal parameters for butt joints in a friction stir welding (FSW) process with dissimilar aluminium alloys. Mater. Res. Express 2023, 10, 026514. [Google Scholar] [CrossRef]
- Kubit, A.; Bucior, M.; Wydrzyński, D.; Trzepieciński, T.; Pytel, M. Failure mechanisms of refill friction stir spot welded 7075-T6 aluminium alloy single-lap joints. Int. J. Adv. Manuf. Technol. 2018, 94, 4479–4491. [Google Scholar] [CrossRef]
- Andres, J.; Wrońska, A.; Gałaczyński, T.; Luty, G.; Burek, R. Effect of process parameters on microstructure and mechanical properties of RFSSW lap joints of thin Al 7075-t6 sheets. Arch. Metall. Mater. 2018, 63, 39–43. [Google Scholar]
- Ziółkowski, W.; Boronski, D.; Skibicki, A.; Stachowiak, R.; Kosturek, R.; Sniezek, L. Mechanical Properties and Microstructure of Dissimilar S355/AA6061-T6 FSW Butt Joints. Materials 2023, 16, 5950. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Lia, W.Y.; Ding, Y.; Hou, W.; Liu, X.C.; Guo, W.; Chen, H.Y.; Liu, X.; Yang, J.; Gerlich, A.P. Material flow during refill friction stir spot welded dissimilar Al alloys using a grooved tool. J. Manuf. Process. 2020, 49, 260–270. [Google Scholar] [CrossRef]
- Vasantha Kumar, K.P.; Balasubramanian, M. Multi-Response Optimization of FSW Parameters for Dissimilar Al-Mg Alloys. Tech. Gaz. 2022, 29, 926–932. [Google Scholar] [CrossRef]
- Zou, Y.; Li, W.; Chu, Q.; Wu, D.; Su, Y.; Shen, Z.; Wang, F.; Tang, H. Formability and mechanical property of refill friction stir spot–welded joints. Weld. World 2021, 65, 899–907. [Google Scholar] [CrossRef]
- D’Urso, G.; Longo, M.; Giardini, C. Friction Stir Spot Welding (FSSW) of Aluminum Sheets: Experimental and Simulative Analysis. Key Eng. Mater. 2013, 549, 477–483. [Google Scholar] [CrossRef]
- Mortello, M.; Pedemonte, M.; Contuzzi, N.; Casalino, G. Experimental Investigation of Material Properties in FSW Dissimilar Aluminum-Steel Lap Joints. Metals 2021, 11, 147. [Google Scholar] [CrossRef]
- Muci-Küchler, K.H.; Kalagara, S.; Arbegast, W.J. Simulation of a refill friction stir spot welding process using a fully coupled thermomechanical FEM model. J. Manuf. Sci. Eng. 2010, 132, 014503. [Google Scholar] [CrossRef]
- Cao, J.Y.; Wang, M.; Kong, L.; Yin, Y.H.; Guo, L.J. Numerical modeling and experimental investigation of material flow in friction pot welding of Al 6061–T6. Int. J. Adv. Manuf. Technol. 2017, 89, 2129–2139. [Google Scholar] [CrossRef]
- Akinlabi, E.T.; Andrews, A.; Akinlabi, S.A. Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminum and copper. Trans. Nonferrous Met. Soc. China 2014, 24, 1323–1330. [Google Scholar] [CrossRef]
- Effertz, P.S.; de Carvalho, W.S.; Guimarães, R.P.M.; Saria, G.; Amancio-Filho, S.T. Optimization of Refill Friction Stir Spot Welded AA2024-T3 Using Machine Learning. Front. Mater. 2022, 9, 864187. [Google Scholar] [CrossRef]
- Dong, Z.; Song, Q.; Ai, X.; Lv, Z. Effect of joining time on intermetallic compound thickness and mechanical properties of refill friction stir spot welded dissimilar Al/Mg alloys. J. Manuf. Process. 2019, 42, 106–112. [Google Scholar] [CrossRef]
- Schmal, C.; Meschut, G.; Buhl, N. Joining of high strength aluminum alloys by refill friction stir spot welding. Weld. World 2019, 63, 541–550. [Google Scholar] [CrossRef]
- Kubit, A.; Trzepiecinski, T. A fully coupled thermo-mechanical numerical modelling of the refill friction stir spot welding process in Alclad 7075-T6 aluminium alloy sheets. Arch. Civ. Mech. Eng. 2020, 20, 117. [Google Scholar] [CrossRef]
- Silva, B.H.; Zepon, G.; Bolfarini, C.; Santos, J.F. Refill friction stir spot welding of AA6082-T6 alloy: Hook defect formation and its influence on the mechanical properties and fracture behavior. Mater. Sci. Eng. A 2020, 773, 138724. [Google Scholar] [CrossRef]
- Adamus, J.; Adamus, K. The analysis of reasons for defects formation in aluminum joints created using RFSSW technology. Manuf. Lett. 2019, 21, 35–40. [Google Scholar] [CrossRef]
- Liu, X.; Qiao, F.; Guo, L.; Qiu, X. Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding. Int. J. Miner. Metall. Mater. 2017, 24, 164–170. [Google Scholar] [CrossRef]
- Berger, E.; Miles, M.; Curtis, A.; Blackhurst, P.; Hovanski, Y. 2D Axisymmetric Modeling of Refill Friction Stir Spot Welding and Experimental Validation. J. Manuf. Mater. Process. 2022, 6, 89. [Google Scholar] [CrossRef]
- Berger, E.; Miles, M.; Blackhurst, P.; Belnap, R.; Hovanski, Y. 2D Axisymmetric Modeling of RFSSW Repair and Experimental Validation. In Friction Stir Welding and Processing XII, TMS 2023; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Takeoka, N.; Tsuchida, T.; Matsuda, T.; Ogura, T.; Ohashi, R.; Hirose, A. Analysis of Mechanical Properties of Dissimilar Material Joint Using Scrubbing Refill Friction Stir Spot Welding. J. Adv. Join. Process. 2022, 5, 100112. [Google Scholar] [CrossRef]
- Zhang, Z.Q. Improving tensile strength of radial-additive friction stir repaired exceeded tolerance hole of 2024-T4 Al alloy by EHGWOA-BPNN. J. Mater. Res. Technol.-JMRT 2024, 29, 2980–2990. [Google Scholar] [CrossRef]
- Li, Y.T. Improving the tensile strength of non-keyhole friction stir lap welding joint of 2024-T4 Al alloy by radial basis function neural network and improved particle swarm optimization algorithm. Front. Mater. 2022, 9, 1039580. [Google Scholar] [CrossRef]
- Guo, R.X. Improving the Tensile Shear Load of Al-Mg-Si Alloy FSLW Joint by BPNN-GA. Trans. Indian Inst. Met. 2021, 74, 1521–1528. [Google Scholar] [CrossRef]
- Hu, W. Improving the mechanical property of dissimilar Al/Mg hybrid friction stir welding joint by PIO-ANN. J. Mater. Sci. Technol. 2020, 53, 41–52. [Google Scholar] [CrossRef]
- Song, Q. Improving joint quality of hybrid friction stir welded Al/Mg dissimilar alloys by RBFNN-GWO system. J. Manuf. Process. 2020, 59, 750–759. [Google Scholar] [CrossRef]
- MSC Software Company. Simufact Forming-Theory Manual; Computational Applications and System Integration Inc.: Champaign, IL, USA, 2019. [Google Scholar]
- Zhao, Y.; Liu, H.; Yang, T.; Lin, Z.; Hu, Y. Study of temperature and material flow during friction spot welding of 7B04-T74 aluminum alloy. Int. J. Adv. Manuf. Technol. 2016, 88, 1467–1475. [Google Scholar] [CrossRef]
- Song, M.; Kovacevic, R. Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int. J. Mach. Tools Manuf. 2003, 43, 605–615. [Google Scholar] [CrossRef]
- Rosendo, T.; Parra, B.; Tier, M.D.; Da Silva, A.A.M.; Dos Santos, J.F.; Strohaecker, T.R.; Alcântara, N.G. Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminum alloy. Mater. Des. 2011, 32, 1094–1100. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Ji, S.; Zhang, J.; Jin, C.; Ma, L.; Song, Q.; Zhang, Z.; Liu, H.; Ji, S.; et al. Enhanced formation quality and tensile shear load of 7B04 aluminum alloys lap joint by impacting flow friction stir lap welding. J. Mater. Res. Technol. 2024, 30, 5096–5108. [Google Scholar] [CrossRef]
- Shi, Y.; Yue, Y.; Zhang, L.; Ji, S.; Wang, Y. Refill friction stir spot welding of 2198-T8 aluminum alloy. Trans. Indian Inst. Met. 2018, 71, 139–145. [Google Scholar] [CrossRef]
- Dumitrescu, D.; Costin, H. Rețele Neuronale. Teorie și Aplicații (Neural Networks. Theory and Applications); Teora: București, Romania, 1996. [Google Scholar]
- Antognetti, P.; Milutinovic, V. (Eds.) Neural Networks. Concepts, Applications and Implementations; Prentice Hall: Englewood Cllifs, NJ, USA, 1991; Volume 1–4. [Google Scholar]
- Nedeljkovic, V.; Miloslavjevic, P. On the Influence of the Training Set Data Preprocessing on Neural Network Training. In Proceedings of the Pattern Recognition, The Hague, The Netherlands, 30 August–3 September 1992; IEEE Computer Society: Washington, DC, USA, 1990; Volume 25, pp. 33–36. [Google Scholar]
Al | Mg | Si | Fe | Cu | Cr | Zn | Ti | Mn | |
---|---|---|---|---|---|---|---|---|---|
AA7075 | 87.1 91.4 | 2.1 2.9 | 0 0.4 | 0 0.5 | 1.2 2.0 | 0.18 0.28 | 5.1 6.1 | 0 0.2 | 0 0.3 |
AA6061 | 95.8 98.6 | 0.8 1.2 | 0.4 0.8 | <= 0.7 | 0.15 0.4 | 0.04 0.35 | <= 0.25 | <= 0.15 | <= 0.15 |
Point | Rotation Speed [rpm] | Penetration Depth [mm] | Point | Rotation Speed [rpm] | Penetration Depth [mm] | Point | Rotation Speed [rpm] | Penetration Depth [mm] |
---|---|---|---|---|---|---|---|---|
1 | 2400 | 0.8 | 7 | 2400 | 0.85 | 13 | 2400 | 0.9 |
2 | 2600 | 0.8 | 8 | 2600 | 0.85 | 14 | 2600 | 0.9 |
3 | 2800 | 0.8 | 9 | 2800 | 0.85 | 15 | 2800 | 0.9 |
4 | 3000 | 0.8 | 10 | 3000 | 0.85 | 16 | 3000 | 0.9 |
5 | 3200 | 0.8 | 11 | 3200 | 0.85 | 17 | 3200 | 0.9 |
Material | Yield Stress Rp0.2 (MPa) | Ultimate Tensile Stress Rm (MPa) | Elongation at Fracture A, % | Melting Point °C |
---|---|---|---|---|
6061-T6 AA | 276 | 310 | 12 | 582–652 |
7075-T6 AA | 502 | 572 | 13 | 477–735 |
Mat. | C1 | C2 | l1 | l2 | m1 | m2 | n1 | n2 |
---|---|---|---|---|---|---|---|---|
AA 6061-T6 | 405.9 | −0.0032 | −4.344 × 10−5 | 0.01674 | 3.731 × 10−4 | −0.05181 | −5.610 × 10−5 | 0.2530 |
AA 7075-T6 | 506.5 | −0.0044 | 5.756 × 10−5 | −0.0280 | 2.659 × 10−4 | −0.00110 | −4.818 × 10−5 | −0.1061 |
Tend | Tend calc | Δ Tend [%] | Tmax | Tmax calc | ΔTmax [%] | σend | σend calc | Δσend [%] | σmax | σmax calc | Δσmax [%] |
---|---|---|---|---|---|---|---|---|---|---|---|
559 | 562.63 | 0.65 | 582 | 582.78 | 0.13 | 261 | 256.11 | 1.87 | 373 | 371 | 0.54 |
554 | 556.57 | 0.46 | 568 | 570.36 | 0.42 | 267 | 264.1 | 1.09 | 416 | 420.84 | 1.16 |
443.5 | 450.1 | 1.49 | 462 | 468.79 | 1.47 | 257 | 255.59 | 0.55 | 416.5 | 418.79 | 0.55 |
459 | 459.24 | 0.05 | 483 | 483.09 | 0.02 | 254.5 | 253.03 | 0.58 | 371.5 | 371.53 | 0.01 |
510 | 511.32 | 0.26 | 525 | 523.55 | 0.28 | 256 | 255.95 | 0.02 | 421 | 419.54 | 0.35 |
523 | 530.72 | 1.48 | 545 | 552.17 | 1.32 | 253 | 253.26 | 0.10 | 374 | 372.64 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bîrsan, D.C.; Susac, F.; Teodor, V.G. Optimization and Analysis of Refill Friction Stir Spot Welding (RFSSW) Parameters of Dissimilar Aluminum Alloy Joints by FE and ANN Methods. Materials 2024, 17, 4586. https://doi.org/10.3390/ma17184586
Bîrsan DC, Susac F, Teodor VG. Optimization and Analysis of Refill Friction Stir Spot Welding (RFSSW) Parameters of Dissimilar Aluminum Alloy Joints by FE and ANN Methods. Materials. 2024; 17(18):4586. https://doi.org/10.3390/ma17184586
Chicago/Turabian StyleBîrsan, Dan Cătălin, Florin Susac, and Virgil Gabriel Teodor. 2024. "Optimization and Analysis of Refill Friction Stir Spot Welding (RFSSW) Parameters of Dissimilar Aluminum Alloy Joints by FE and ANN Methods" Materials 17, no. 18: 4586. https://doi.org/10.3390/ma17184586
APA StyleBîrsan, D. C., Susac, F., & Teodor, V. G. (2024). Optimization and Analysis of Refill Friction Stir Spot Welding (RFSSW) Parameters of Dissimilar Aluminum Alloy Joints by FE and ANN Methods. Materials, 17(18), 4586. https://doi.org/10.3390/ma17184586