Enhanced Minor Ginsenoside Contents of Nano-Sized Black Korean Ginseng through Hot Melt Extrusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Black Ginseng Nanocapsules
2.3. Extraction of Ginsenosides
2.4. High-Performance Liquid Chromatography Analysis
2.5. Measurement of Particle Size, Polydispersity Index, and Zeta Potential
2.6. X-ray Diffraction Analysis
2.7. Thermogravimetric Analysis
2.8. Fourier-Transform Infrared Spectroscopy
2.9. Statistical Analysis
3. Results and Discussion
3.1. HPLC Analysis of Ginsenoside Content
3.2. Particle Size, Polydispersity Index, and Zeta Potential
3.3. X-ray Diffraction Data
3.4. Fourier-Transform Infrared Analysis and Thermogravimetric Analysis
3.5. Limitations of This Study and Directions for Future Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eom, S.J.; Kim, K.-T.; Paik, H.-D. Microbial bioconversion of ginsenosides in Panax ginseng and their improved bioactivities. Food Rev. Int. 2018, 34, 698–712. [Google Scholar] [CrossRef]
- Huang, L.; Li, H.-J.; Wu, Y.-C. Processing technologies, phytochemistry, bioactivities and applications of black ginseng-a novel manufactured ginseng product: A comprehensive review. Food Chem. 2023, 407, 134714. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.; Yun, B.S.; Sung, C.K. Comparative study of white and steamed black Panax ginseng, P. quinquefolium, and P. notoginseng on cholinesterase inhibitory and antioxidative activity. J. Ginseng Res. 2012, 36, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Han, M.-S.; Han, I.-H.; Lee, D.; An, J.M.; Kim, S.-N.; Shin, M.-S.; Yamabe, N.; Hwang, G.S.; Yoo, H.H.; Choi, S.-J.; et al. Beneficial effects of fermented black ginseng and its ginsenoside 20(S)-Rg3 against cisplatin-induced nephrotoxicity in LLC-PK1 cells. J. Ginseng Res. 2016, 40, 135–140. [Google Scholar] [CrossRef]
- Chen, G.; Li, H.; Gao, Y.; Zhang, L.; Zhao, Y. Flavored black ginseng exhibited antitumor activity via improving immune function and inducing apoptosis. Food Funct. 2017, 8, 1880–1889. [Google Scholar] [CrossRef]
- Metwaly, A.M.; Lianlian, Z.; Luqi, H.; Deqiang, D. Black ginseng and its saponins: Preparation, phytochemistry and pharmacological effects. Molecules 2019, 24, 1856. [Google Scholar] [CrossRef]
- Kim, D.-H. Gut microbiota-mediated pharmacokinetics of ginseng saponins. J. Ginseng Res. 2018, 42, 255–263. [Google Scholar] [CrossRef]
- Ke, Y.; Huang, L.; Song, Y.; Liu, Z.; Liang, L.; Wang, L.; Wang, T. Preparation and pharmacological effects of minor ginsenoside nanoparticles: A review. Front. Pharmacol. 2022, 13, 974274. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, R.; Huang, Z.; Zhou, J. Progress in the conversion of ginsenoside Rb1 into minor ginsenosides using β-glucosidases. Foods 2023, 12, 397. [Google Scholar] [CrossRef]
- Sun, B.-S.; Pan, F.-Y.; Sung, C.-K. Repetitious steaming-induced chemical transformations and global quality of black ginseng derived from Panax ginseng by HPLC-ESI-MS/MS n based chemical profiling approach. Biotechnol. Bioprocess Eng. 2011, 16, 956–965. [Google Scholar] [CrossRef]
- Jin, Y.; Kim, Y.-J.; Jeon, J.-N.; Wang, C.; Min, J.-W.; Noh, H.-Y.; Yang, D.-C. Effect of white, red and black ginseng on physicochemical properties and ginsenosides. Plant Foods Hum. Nutr. 2015, 70, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.-M.; Xu, F.-X.; Li, Y.-J.; Xi, X.-Z.; Cui, X.-W.; Han, C.-C.; Zhang, X.-L. Study on transformation of ginsenosides in different methods. BioMed Res. Int. 2017, 2017, 8601027. [Google Scholar] [CrossRef] [PubMed]
- Piao, X.M.; Huo, Y.; Kang, J.P.; Mathiyalagan, R.; Zhang, H.; Yang, D.U.; Kim, M.; Yang, D.C.; Kang, S.C.; Wang, Y.P. Diversity of ginsenoside profiles produced by various processing technologies. Molecules 2020, 25, 4390. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Lee, H.-N.; Hong, S.-J.; Kang, H.-J.; Cho, J.Y.; Kim, D.; Ameer, K.; Kim, Y.-M. Enhanced biotransformation of the minor ginsenosides in red ginseng extract by Penicillium decumbens β-glucosidase. Enzym. Microb. Technol. 2022, 153, 109941. [Google Scholar] [CrossRef]
- Tran, T.N.A.; Son, J.-S.; Awais, M.; Ko, J.-H.; Yang, D.C.; Jung, S.-K. β-Glucosidase and Its Application in Bioconversion of Ginsenosides in Panax ginseng. Bioengineering 2023, 10, 484. [Google Scholar] [CrossRef]
- Ryu, S.; Lee, H.Y.; Nam, S.-H.; Baek, J.-S. Antifungal Activity of Angelica gigas with Enhanced Water Solubility of Decursin and Decursinol Angelate by Hot-Melt Extrusion Technology against Candida albicans. Int. J. Transl. Med. 2022, 2, 515–521. [Google Scholar] [CrossRef]
- Kim, H.-B.; Ryu, S.; Baek, J.-S. The effect of hot-melt extrusion of mulberry leaf on the number of active compounds and antioxidant activity. Plants 2022, 11, 3019. [Google Scholar] [CrossRef]
- Lee, H.Y.; Ryu, S.; You, H.S.; Jeon, Y.N.; Jin, M.; Cho, C.-W.; Baek, J.-S. Enhanced antioxidant and anti-inflammatory effects of bee pollen and honey hybrid formulation by hot-melt extrusion. Food Hydrocoll. Health 2023, 4, 100167. [Google Scholar] [CrossRef]
- You, H.-S.; Ryu, S.-J.; Lee, H.-Y.; Baek, J.-S. Enhanced antibacterial activity of multi-walled carbon nanotubes loaded with hot-melt extruded Mulberry leaf silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2024, 699, 134522. [Google Scholar] [CrossRef]
- Jeon, Y.-N.; Ryu, S.-J.; Lee, H.-Y.; Kim, J.-O.; Baek, J.-S. Green Synthesis of Silver Nanoparticle Using Black Mulberry and Characterization, Phytochemical, and Bioactivity. Antibiotics 2024, 13, 686. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Jambrak, A.R.; Munekata, P.E.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef]
- Ming, J.; Chen, L.; Hong, H.; Li, J. Effect of superfine grinding on the physico-chemical, morphological and thermogravimetric properties of Lentinus edodes mushroom powders. J. Sci. Food Agric. 2015, 95, 2431–2437. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Cano-Sarmiento, C.; Téllez-Medina, D.; Viveros-Contreras, R.; Cornejo-Mazón, M.; Figueroa-Hernández, C.; García-Armenta, E.; Alamilla-Beltrán, L.; García, H.; Gutiérrez-López, G. Zeta potential of food matrices. Food Eng. Rev. 2018, 10, 113–138. [Google Scholar] [CrossRef]
- Desai, M.P.; Labhasetwar, V.; Amidon, G.L.; Levy, R.J. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm. Res. 1996, 13, 1838–1845. [Google Scholar] [CrossRef]
- Liu, D.; Pan, H.; He, F.; Wang, X.; Li, J.; Yang, X.; Pan, W. Effect of particle size on oral absorption of carvedilol nanosuspensions: In vitro and in vivo evaluation. Int. J. Nanomed. 2015, 10, 6425–6434. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, J.; Chen, F.; Wang, X.; Zhu, Q.; Ao, Q. Surface characterization of corn stalk superfine powder studied by FTIR and XRD. Colloids Surf. B Biointerfaces 2013, 104, 207–212. [Google Scholar] [CrossRef]
- Onoue, S.; Takahashi, H.; Kawabata, Y.; Seto, Y.; Hatanaka, J.; Timmermann, B.; Yamada, S. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J. Pharm. Sci. 2010, 99, 1871–1881. [Google Scholar] [CrossRef]
- Li, Y.-M.; Sun, S.-Q.; Zhou, Q.; Qin, Z.; Tao, J.-X.; Wang, J.; Fang, X. Identification of American ginseng from different regions using FT-IR and two-dimensional correlation IR spectroscopy. Vib. Spectrosc. 2004, 36, 227–232. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Kim, M.; Park, S.; Cho, J.-S.; Lim, J.H.; Moon, K.-D. Rapid discrimination of Panax ginseng powder adulterated with various root plants by FT-IR spectroscopy coupled with multivariate analysis. Food Sci. Biotechnol. 2024, 33, 805–815. [Google Scholar] [CrossRef]
- Xue, P.; Yao, Y.; Yang, X.-S.; Feng, J.; Ren, G.-X. Improved antimicrobial effect of ginseng extract by heat transformation. J. Ginseng Res. 2017, 41, 180–187. [Google Scholar] [CrossRef] [PubMed]
HPLC Analysis Conditions | Column | YMC Triart C18 (5 μm, 12 nm) 250 × 4.6 mm | |
Detector | Diode Array Detector (DAD) | ||
Oven | 40 °C | ||
Solvent A | Water | ||
Solvent B | Acetonitrile (ACN) | ||
Flow rate | 1.0 mL/min | ||
Injection volume | 10 μL | ||
Gradient elution system | |||
Time (m) | %A | %B | |
Initial | 95 | 5 | |
35 m | 65 | 35 | |
40 m | 20 | 80 | |
72 m | 95 | 5 | |
90 m | 95 | 5 |
Particle Size (nm) | PDI (Index) | ZP (mV) | |
---|---|---|---|
BG | 864.7 ± 57.30 | 0.710 ± 0.056 | −21.21 ± 1.02 |
HME-BG | 599.2 ± 41.12 | 0.380 ± 0.019 | −18.88 ± 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, H.-Y.; Baek, J.-S. Enhanced Minor Ginsenoside Contents of Nano-Sized Black Korean Ginseng through Hot Melt Extrusion. Materials 2024, 17, 4612. https://doi.org/10.3390/ma17184612
Lee J, Lee H-Y, Baek J-S. Enhanced Minor Ginsenoside Contents of Nano-Sized Black Korean Ginseng through Hot Melt Extrusion. Materials. 2024; 17(18):4612. https://doi.org/10.3390/ma17184612
Chicago/Turabian StyleLee, Junho, Ha-Yeon Lee, and Jong-Suep Baek. 2024. "Enhanced Minor Ginsenoside Contents of Nano-Sized Black Korean Ginseng through Hot Melt Extrusion" Materials 17, no. 18: 4612. https://doi.org/10.3390/ma17184612
APA StyleLee, J., Lee, H. -Y., & Baek, J. -S. (2024). Enhanced Minor Ginsenoside Contents of Nano-Sized Black Korean Ginseng through Hot Melt Extrusion. Materials, 17(18), 4612. https://doi.org/10.3390/ma17184612