Characterization of Thermal Expansion Coefficient of 3D Printing Polymeric Materials Using Fiber Bragg Grating Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Specimens’ Fabrication and Thermal Cycling
2.2. Fiber Bragg Grating Sensors Working Principles
3. Results and Discussion
4. Conclusions
- The locally calculated CTEs and Tg values, based on the FBG sensor response to temperature increase, are comparable to the CTEs reported in literature, determined using other measuring methods, such as TMA or dilatometry.
- For most of the tested materials, their thermal response was similar in both consecutively applied thermal cycles.
- The CF-PA/0° specimens exhibited the lowest CTE value of 14 × 10−6/°C, as a result of the presence of the short carbon fibers aligned in the 0° printing orientation.
- The PEBA material was proven to have the most isotropic thermal response for both examined raster orientations of 0° and 90°, with CTE values of 117 × 10−6/°C and 108 × 10−6/°C, respectively. This isotropic behavior is also evident from the similar residual strains calculated in both printing orientations at the end of the printing process as well as at the end of the first thermal cycle.
- The sensor-based calculated residual strains were of considerable magnitude from measurements taken at room temperature at the end of the printing process and at the ends of the applied thermal cycles.
- Considering that the present work has validated the methodology of measuring CTE using FBG sensors on a wide range of 3D-printed materials, a future research work could use FBG sensors for mechanical characterization of the studied materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quintana, J.L.C.; Slattery, L.; Pinkham, J.; Keaton, J.; Lopez-Anido, R.A.; Sharp, K. Effects of Fiber Orientation on the Coefficient of Thermal Expansion of Fiber-Filled Polymer Systems in Large Format Polymer Extrusion-Based Additive Manufacturing. Materials 2022, 15, 2764. [Google Scholar] [CrossRef] [PubMed]
- Love, L.J.; Kunc, V.; Rios, O.; Duty, C.E.; Elliott, A.M.; Post, B.K.; Smith, R.J.; Blue, C.A. The Importance of Carbon Fiber to Polymer Additive Manufacturing. J. Mater. Res. 2014, 29, 1893–1898. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling. Compos. Part B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Polyzos, E.; Van Hemelrijck, D.; Pyl, L. Modeling of the Coefficient of Thermal Expansion of 3D-Printed Composites. Int. J. Mech. Sci. 2024, 268, 108921. [Google Scholar] [CrossRef]
- Iragi, M.; Pascual-González, C.; Esnaola, A.; Lopes, C.; Aretxabaleta, L. Ply and Interlaminar Behaviours of 3D Printed Continuous Carbon Fibre-Reinforced Thermoplastic Laminates; Effects of Processing Conditions and Microstructure. Addit. Manuf. 2019, 30, 100884. [Google Scholar] [CrossRef]
- Kousiatza, C.; Tzetzis, D.; Karalekas, D. In-Situ Characterization of 3D Printed Continuous Fiber Reinforced Composites: A Methodological Study Using Fiber Bragg Grating Sensors. Compos. Sci. Technol. 2019, 174, 134–141. [Google Scholar] [CrossRef]
- Melenka, G.W.; Cheung, B.K.O.; Schofield, J.S.; Dawson, M.R.; Carey, J.P. Evaluation and Prediction of the Tensile Properties of Continuous Fiber-Reinforced 3D Printed Structures. Compos. Struct. 2016, 153, 866–875. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, A.S.; Sun, J.; Quan, Z.; Gu, B.; Sun, B.; Cotton, C.; Heider, D.; Chou, T.-W. Characterization of Residual Stress and Deformation in Additively Manufactured ABS Polymer and Composite Specimens. Compos. Sci. Technol. 2017, 150, 102–110. [Google Scholar] [CrossRef]
- Sunny, S.; Chen, H.; Malik, A.; Lu, H. Influence of Residual Stress and Fluid–Structure Interaction on the Impact Behavior of Fused Filament Fabrication Components. Addit. Manuf. 2021, 37, 101662. [Google Scholar] [CrossRef]
- Spoerk, M.; Sapkota, J.; Weingrill, G.; Fischinger, T.; Arbeiter, F.; Holzer, C. Shrinkage and Warpage Optimization of Expanded-Perlite-Filled Polypropylene Composites in Extrusion-Based Additive Manufacturing. Macromol. Mater. Eng. 2017, 302, 1700143. [Google Scholar] [CrossRef]
- Fitzharris, E.R.; Watanabe, N.; Rosen, D.W.; Shofner, M.L. Effects of Material Properties on Warpage in Fused Deposition Modeling Parts. Int. J. Adv. Manuf. Technol. 2018, 95, 2059–2070. [Google Scholar] [CrossRef]
- Chatzidai, N.; Karalekas, D. Experimental and Numerical Study on the Influence of Critical 3D Printing Processing Parameters. Frat. Ed Integrita Strutt. Struct. Integr. 2019, 13, 407–413. [Google Scholar] [CrossRef]
- Botean, A.-I. Thermal Expansion Coefficient Determination of Polylactic Acid Using Digital Image Correlation. In Proceedings of the EENVIRO 2017 Workshop—Advances in Heat and Transfer in Built Environment, Napoca, Romania, 21 February 2018; p. 01007. [Google Scholar]
- Baker, A.M.; McCoy, J.; Majumdar, B.S.; Rumley-Ouellette, B.; Wahry, J.; Marchi, A.N.; Bernardin, J.D.; Spernjak, D. Measurement and Modelling of Thermal and Mechanical Anisotropy of Parts Additively Manufactured Using Fused Deposition Modelling (FDM). Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance. In Proceedings of the 11th International Workshop on Structural Health Monitoring, IWSHM, Stanford, CA, USA, 1 October 2017; pp. 612–620. [Google Scholar]
- Motoc, D.L.; Draghicescu, H.T.; Florea, D.; Preda, I.; Ispas, N. Insights into Mechanical and Thermal Properties of Additively Manufactured PLA Samples Triggered by Automotive Industry Demands. Mater. Plast. 2021, 57, 193–201. [Google Scholar] [CrossRef]
- Rădulescu, B.; Mihalache, A.M.; Hrițuc, A.; Rădulescu, M.; Slătineanu, L.; Munteanu, A.; Dodun, O.; Nagîț, G. Thermal Expansion of Plastics Used for 3D Printing. Polymers 2022, 14, 3061. [Google Scholar] [CrossRef] [PubMed]
- Glaskova-Kuzmina, T.; Dejus, D.; Jātnieks, J.; Vīndedze, E.; Bute, I.; Sevcenko, J.; Aniskevich, A.; Stankevich, S.; Boobani, B. The Tensile, Thermal and Flame-Retardant Properties of Polyetherimide and Polyetherketoneketone Processed via Fused Filament Ffabrication. Polymers 2024, 16, 336. [Google Scholar] [CrossRef] [PubMed]
- Bute, I.; Tarasovs, S.; Vidinejevs, S.; Vevere, L.; Sevcenko, J.; Aniskevich, A. Thermal Properties of 3D Printed Products from the Most Common Polymers. Int. J. Adv. Manuf. Technol. 2023, 124, 2739–2753. [Google Scholar] [CrossRef]
- Faust, J.L.; Kelly, P.G.; Jones, B.D.; Roy-Mayhew, J.D. Effects of Coefficient of Thermal Expansion and Moisture Absorption on the Dimensional Accuracy of Carbon-Reinforced 3D Printed Parts. Polymers 2021, 13, 3637. [Google Scholar] [CrossRef]
- Kousiatza, C.; Karalekas, D. In-Situ Monitoring of Strain and Temperature Distributions during Fused Deposition Modeling Process. Mater. Des. 2016, 97, 400–406. [Google Scholar] [CrossRef]
- Kinet, D.; Mégret, P.; Goossen, K.W.; Qiu, L.; Heider, D.; Caucheteur, C. Fiber Bragg Grating Sensors toward Structural Health Monitoring in Composite Materials: Challenges and Solutions. Sensors 2014, 14, 7394–7419. [Google Scholar] [CrossRef]
- Quattrocchi, A.; Montanini, R. Development and Verification of Self-Sensing Structures Printed in Additive Manufacturing: A Preliminary study. Acta IMEKO 2023, 12, 1–7. [Google Scholar] [CrossRef]
- Economidou, S.N.; Karalekas, D. Optical Sensor-Based Measurements of Thermal Expansion Coefficient in Additive Manufacturing. Polym. Test. 2016, 51, 117–121. [Google Scholar] [CrossRef]
- Orlowska-Galezia, A.; Graczykowski, C.; Pawlowski, P.; Rimašauskienė, R.; Rimašauskas, M.; Kuncius, T.; Majewska, K.; Mieloszyk, M. Characterization of Thermal Expansion in Additively Manufactured Continuous Carbon Fibre Reinforced Polymer Composites Using Fibre Bragg Grating Sensors. Measurement 2024, 227, 114147. [Google Scholar] [CrossRef]
- Kashyap, R. Fiber Bragg Gratings, 2nd ed.; Academic Press: London, UK, 2009. [Google Scholar]
- Measures, R.; Abrate, S. Structural Monitoring with Fiber Optic Technology. Appl. Mech. Rev. 2002, 55, B10–B11. [Google Scholar] [CrossRef]
- Othonos, A.; Kalli, K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing; Artech House: London, UK, 1999. [Google Scholar]
- Colpo, F.; Humbert, L.; Botsis, J. Characterisation of Residual Stresses in a Single Fibre Composite with FBG Sensor. Compos. Sci. Technol. 2007, 67, 1830–1841. [Google Scholar] [CrossRef]
- Giaccari, P.; Dunkel, G.R.; Humbert, L.; Botsis, J.; Limberger, H.G.; Salathé, R.P. On a Direct Determination of Non-Uniform Internal Strain Fields Using Fibre Bragg Gratings. Smart Mater. Struct. 2005, 14, 127–136. [Google Scholar] [CrossRef]
- Shibata, N.; Shibata, S.; Edahiro, T. Refractive Index Dispersion of Lightguide Glasses at High Temperature. Electron. Lett. 1981, 17, 310–311. [Google Scholar] [CrossRef]
- Lai, M.; Friedrich, K.; Botsis, J.; Burkhart, T. Evaluation of Residual Strains in Epoxy with Different Nano/Micro-Fillers Using Embedded Fiber Bragg Grating Sensor. Compos. Sci. Technol. 2010, 70, 2168–2175. [Google Scholar] [CrossRef]
- Krause, B.; Kroschwald, L.; Pötschke, P. The Influence of the Blend Ratio in PA6/PA66/MWCNT Blend Composites on the Electrical and Thermal Properties. Polymers 2019, 11, 122. [Google Scholar] [CrossRef]
- Sirjani, E.; Cragg, P.J.; Dymond, M.K. Glass Transition Temperatures, Melting Temperatures, Water Contact Angles and Dimensional Precision of Simple Fused Deposition Model 3D Prints and 3D Printed Channels Constructed from a Range of Commercially Available Filaments. Chem. Data Collect. 2019, 22, 100244. [Google Scholar] [CrossRef]
Material | Manufacturer | Selected Extruder Temperature, (°C) | Selected Bed Temperature, (°C) |
---|---|---|---|
CF-PA | Addigy Covestro—ID1030 CF10 (Covestro AG, Leverkusen, Germany) | 285 | 100 |
PA | Taulman—Bridge Nylon (Braskem SA, São Paulo, Brazil) | 255 | 65 |
ABS | eSUN—Gray (Shenzhen Esun Industrial Co., Shenzhen, China) | 240 | 100 |
PLA | PM—White (Plasty Mladeč, Haňovice, Czech Republic) | 210 | 65 |
PEBA | Flexfill—PEBA 90A (Fillamentum Manufacturing Czech s.r.o., Hulin, Czech Republic) | 245 | 100 |
Material | Raster Orientation | Temperature Range, (°C) | CTE, (10−6/°C) | Literature CTE, (10−6/°C) | Tg (°C) | Literature Tg, (°C) |
---|---|---|---|---|---|---|
CF-PA | 0° | 25–40 | 14 ± 1 | 22 [19] | - | - |
90° | 25–60 | 86 ± 3 | 95 [19] | 82 ± 2 | - | |
PA | 0° | 25–40 | 118 ± 5 | 126 [18] | 52 ± 2 | 50–55 [32] |
90° | 25–50 | 119 ± 5 | 120 [18] | 82 ± 2 | - | |
ABS | 0° | 25–50 | 86 ± 3 | 90 [18], 102 [23] | 92 ± 2 | 107 [33] |
90° | 25–50 | 89 ± 3 | 93 [18], 115 [23] | 92 ± 2 | - | |
PLA | 0° | 25–50 | 96 ± 5 | 100 [18] | 62 ± 2 | 57 [33] |
90° | 25–30 | 99 ± 5 | 102 [18] | 42 ± 2 | - | |
PEBA | 0° | 25–50 | 117 ± 5 | - | - | - |
90° | 25–40 | 108 ± 5 | - | - | - |
Material | Raster Orientation | Measured Residual Strains, ε (10−6) | ||
---|---|---|---|---|
End of Printing | End of 1st Thermal Cycle | End of 2nd Thermal Cycle | ||
CF-PA | 0° | −1571 | −1607 | −1663 |
90° | −3514 | −2114 | −2681 | |
PA | 0° | −1842 | −2040 | −1361 |
90° | −7615 | −5678 | −6588 | |
ABS | 0° | −6565 | −6231 | −5753 |
90° | −3156 | −6643 | −6944 | |
PLA | 0° | −2188 | −3465 | −644 |
90° | −1273 | −1034 | −1882 | |
PEBA | 0° | −4807 | −5671 | −5579 |
90° | −4664 | −6099 | −3554 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsika-Klossa, C.; Chatzidai, N.; Kousiatza, C.; Karalekas, D. Characterization of Thermal Expansion Coefficient of 3D Printing Polymeric Materials Using Fiber Bragg Grating Sensors. Materials 2024, 17, 4668. https://doi.org/10.3390/ma17184668
Matsika-Klossa C, Chatzidai N, Kousiatza C, Karalekas D. Characterization of Thermal Expansion Coefficient of 3D Printing Polymeric Materials Using Fiber Bragg Grating Sensors. Materials. 2024; 17(18):4668. https://doi.org/10.3390/ma17184668
Chicago/Turabian StyleMatsika-Klossa, Constantina, Nikoleta Chatzidai, Charoula Kousiatza, and Dimitrios Karalekas. 2024. "Characterization of Thermal Expansion Coefficient of 3D Printing Polymeric Materials Using Fiber Bragg Grating Sensors" Materials 17, no. 18: 4668. https://doi.org/10.3390/ma17184668
APA StyleMatsika-Klossa, C., Chatzidai, N., Kousiatza, C., & Karalekas, D. (2024). Characterization of Thermal Expansion Coefficient of 3D Printing Polymeric Materials Using Fiber Bragg Grating Sensors. Materials, 17(18), 4668. https://doi.org/10.3390/ma17184668