Study on the Flexural Deformation Behavior of High-Titanium Heavy-Slag Concrete Composite Beams: Material Application, Experimental Investigation, and Theoretical Refinement
Abstract
:1. Introduction
2. Preparation of Raw Materials and Samples
2.1. Materials
2.1.1. Cement
2.1.2. Coarse Aggregates
2.1.3. Fine Aggregates
2.1.4. Steel Bars
2.2. Test Specimen Preparation
2.2.1. Flexural Member Design
- (1)
- Concrete Mix Design
- (2)
- Reinforcement Layout
2.2.2. Specimen Fabrication and Measuring-Point Arrangement
3. Experimental Design
4. Results and Discussion
4.1. Test Results and Analysis of Deflection Development in Concrete Beams
4.2. Comparison and Correction of Empirical Formulas for Mid-Span Deflection
4.2.1. Comparison of Empirical Formulas for Mid-Span Deflection
4.2.2. Correction and Re-Comparison of Empirical Formulas for Mid-Span Deflection
4.3. Test Results and Analysis of Concrete-Beam Crack Development
4.4. Comparison and Modification of Empirical Formulas for Fracture Characteristics
4.4.1. Comparison of Theoretical and Experimental Values of the Cracking Moment
4.4.2. Comparison of Empirical Formulas for the Maximum Crack Width
4.4.3. Correction and Re-Comparison of Empirical Formulas for the Maximum Crack Width
5. Conclusions
- (1)
- The variables of the composite beams, such as the composite height, reinforcement ratio, and material structure combination, significantly impacted the deflection and cracking of composite beams. High-titanium heavy slag and fly-ash ceramsite enhanced the composite beam’s deformation resistance. To reduce the deflection of the bending members and mitigate crack development, it is recommended that the reinforcement ratio is appropriately increases and high-titanium heavy-slag composite-beam material structures are used.
- (2)
- A comparison of the theoretical and experimental values of the cracking moment revealed minimal deviations, indicating that the empirical formula for the cracking moment of ordinary concrete beams was equally applicable to high-titanium heavy-slag concrete composite beams.
- (3)
- Significant discrepancies existed between the theoretical and experimental values for the deflection development and maximum crack width of concrete beams. Linear fitting and the introduction of a coefficient related to the prefabricated height of the composite beam corrected the formula, reducing the deflection development deviation to within 5% and the maximum crack-width deviation to within 10%. This adjustment aligned the theoretical design values more closely with the actual values, providing theoretical support to the use of composite beams.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, T.Y.; Liu, G.T.; Chen, P.H.; Chou, N.N.; Ho, S.P. Establishment of a sustainability assessment system for bridges. Sustainability 2021, 13, 4795. [Google Scholar] [CrossRef]
- Nahmens, I.; Ikuma, L.H. Effects of lean construction on sustainability of modular homebuilding. J. Archit. Eng. 2012, 18, 155–163. [Google Scholar] [CrossRef]
- Musa, M.F.; Mohammad, M.F.; Mahbub, R.; Yusof, M.R. Enhancing the quality of life by adopting sustainable modular industrialised building system (IBS) in the Malaysian construction industry. Procedia-Soc. Behav. Sci. 2014, 153, 79–89. [Google Scholar] [CrossRef]
- Tanner, S.; Katra, I.; Argaman, E.; Ben-Hur, M. Erodibility of waste (Loess) soils from construction sites under water and wind erosional forces. Sci. Total Environ. 2018, 616, 1524–1532. [Google Scholar] [CrossRef] [PubMed]
- Pons, O. Assessing the sustainability of prefabricated buildings. In Eco-Efficient Construction and Building Materials; Woodhead Publishing: Sawston, UK, 2014; pp. 434–456. [Google Scholar]
- Zhang, N.; Duan, H.; Sun, P.; Li, J.; Zuo, J.; Mao, R.; Liu, G.; Niu, Y. Characterizing the generation and environmental impacts of subway-related excavated soil and rock in China. J. Clean. Prod. 2020, 248, 119242. [Google Scholar] [CrossRef]
- Velardo, P.; del Bosque, I.S.; de Rojas, M.S.; De Belie, N.; Medina, C. Effect of incorporating biomass bottom ash and construction and demolition waste powder on the physical-mechanical properties and micro-structure of ternary-blended mortars. Constr. Build. Mater. 2024, 432, 136628. [Google Scholar] [CrossRef]
- Yuan, L.; Yang, B.; Lu, W.; Peng, Z. Carbon footprint accounting across the construction waste lifecycle: A critical review of research. Environ. Impact Assess. Rev. 2024, 107, 107551. [Google Scholar] [CrossRef]
- Wang, X. Research on the Evaluation of Comprehensive Utilization Potential of Resources in Typical Mining Areas of Vanadium-Titanium Magnetite in China; China University of Geosciences: Beijing, China, 2015. [Google Scholar]
- Zhang, J. Research on grinding characteristics of high titanium slag. China Powder Technol. 2005, 1, 21–23. [Google Scholar]
- Wei, X.; Li, D.; Ming, F.; Yang, C.; Chen, L.; Liu, Y. Influence of low-temperature curing on the mechanical strength, hydration process, and microstructure of alkali-activated fly ash and ground granulated blast furnace slag mortar. Constr. Build. Mater. 2021, 269, 121811. [Google Scholar] [CrossRef]
- Xiaoying, L.; Jun, L.; Zhongyuan, L.; Li, H.; Jiakun, C. Preparation and properties of reactive powder concrete by using titanium slag aggregates. Constr. Build. Mater. 2020, 234, 117342. [Google Scholar] [CrossRef]
- Sun, J.; Yi Man Li, R.; Jotikasthira, N.; Li, K.; Zeng, L. Experimental study on lightweight precast composite slab of high-titanium heavy-slag concrete. Adv. Civ. Eng. 2021, 2021, 6665388. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, B. Application of pre-wetted high titanium heavy slag aggregate in cement concrete. Materials 2022, 15, 831. [Google Scholar] [CrossRef]
- Lin-Ze, L.I.; Wei, C.; Qi-Bin YA, O. Actual measurement and analysis on the carbonization depth of the high titanium slag concrete. In Proceedings of the 2014 International Conference on Mechanics and Civil Engineering (icmce-14), Wuhan, China, 13–14 December 2014; Atlantis Press: Amsterdam, The Netherlands, 2014; pp. 796–799. [Google Scholar]
- Zhong, S.; Chen, W.; Wang, W.; Li, L.; Xie, L. Experimental Study on Frost Resistance of High Titanium Heavy Slag Concrete. In Proceedings of the 2015 4th International Conference on Sensors, Measurement and Intelligent Materials, Shenzhen, China, 27–28 December 2015; Atlantis Press: Amsterdam, The Netherlands, 2016; pp. 991–994. [Google Scholar]
- Boyd, N.; Khalfan MM, A.; Maqsood, T. Off-site construction of apartment buildings. J. Archit. Eng. 2013, 19, 51–57. [Google Scholar] [CrossRef]
- Ferdous, W.; Bai, Y.; Ngo, T.D.; Manalo, A.; Mendis, P. New advancements, challenges and opportunities of multi-storey modular buildings–A state-of-the-art review. Eng. Struct. 2019, 183, 883–893. [Google Scholar] [CrossRef]
- Lacey, A.W.; Chen, W.; Hao, H.; Bi, K. Structural response of modular buildings–an overview. J. Build. Eng. 2018, 16, 45–56. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Yu, Y. Experimental study on interior connections in modular steel buildings. Eng. Struct. 2017, 147, 625–638. [Google Scholar] [CrossRef]
- Lyu, J.; Li, R.; Zhu, J.; Qi, Y.; Chen, Q.; Sun, B.; Wang, Z. Fire resistance of two types of composite beams constrained by rigid joint. Eng. Struct. 2021, 249, 113337. [Google Scholar] [CrossRef]
- Wu, M.; Fan, S.; Zhou, H.; Han, Y.; Liang, D. Experimental and numerical research on fire resistance of stainless steel-concrete composite beam. J. Constr. Steel Res. 2022, 194, 107342. [Google Scholar] [CrossRef]
- Du, H.; Yuan, S.; Liu, P.; Hu, X.; Han, G. Experimental and finite element study on bending performance of glulam-concrete composite beam reinforced with timber board. Materials 2022, 15, 7998. [Google Scholar] [CrossRef]
- Ranjbar, N.; Behnia, A.; Chai, H.K.; Alengaram, U.J.; Jumaat, M.Z. Fracture evaluation of multi-layered precast reinforced geopolymer-concrete composite beams by incorporating acoustic emission into mechanical analysis. Constr. Build. Mater. 2016, 127, 274–283. [Google Scholar] [CrossRef]
- Gohnert, M. Horizontal shear transfer across a roughened surface. Cem. Concr. Compos. 2003, 25, 379–385. [Google Scholar] [CrossRef]
- Ruocci, G.; Rospars, C.; Moreau, G.; Bisch, P.; Erlicher, S.; Delaplace, A.; Henault, J.M. Digital Image Correlation and Noise-filtering Approach for the Cracking Assessment of Massive Reinforced Concrete Structures. Strain 2016, 52, 503–521. [Google Scholar] [CrossRef]
- Lin, J.P.; Lin, L.; Peng, Z.; Xu, R.; Wang, G. Cracking performance in the hogging-moment regions of natural curing steel–UHPC and steel–UHTCC continuous composite beams. J. Bridge Eng. 2022, 27, 04021106. [Google Scholar] [CrossRef]
- Khorasani, A.M.; Esfahani, M.R.; Sabzi, J. The effect of transverse and flexural reinforcement on deflection and cracking of GFRP bar reinforced concrete beams. Compos. Part B Eng. 2019, 161, 530–546. [Google Scholar] [CrossRef]
- Chaudhary, S.; Pendharkar, U.; Patel, K.A.; Nagpal, A.K. Neural networks for deflections in continuous composite beams considering concrete cracking. Iran. J. Sci. Technol. Trans. Civ. Eng. 2014, 38, 205. [Google Scholar]
- Zou, P.X. Long-term deflection and cracking behavior of concrete beams prestressed with carbon fiber-reinforced polymer tendons. J. Compos. Constr. 2003, 7, 187–193. [Google Scholar] [CrossRef]
- Andreaus, U.; Casini, P. Identification of multiple open and fatigue cracks in beam-like structures using wavelets on deflection signals. Contin. Mech. Thermodyn. 2016, 28, 361–378. [Google Scholar] [CrossRef]
- Gouda, O.; Hassanein, A.; Galal, K. Experimental and numerical study on the crack width and deflection performance of GFRP reinforced concrete beams. Eng. Struct. 2023, 283, 115721. [Google Scholar] [CrossRef]
- Pansare, S.R.; Naik, S.S. Detection of inclined edge crack in prismatic beam using static deflection measurements. Sadhana-Acad. Proc. Eng. Sci. 2019, 44, 42. [Google Scholar] [CrossRef]
- Nie, J.G.; Cai, C.S. Deflection of cracked RC beams under sustained loading. J. Struct. Eng.-ASCE 2000, 126, 708–716. [Google Scholar] [CrossRef]
- Mazaheripour, H.; Barros, J.A.; Soltanzadeh, F.; Sena-Cruz, J. Deflection and cracking behavior of sfrscc beams reinforced with hybrid prestressed GFRP and steel reinforcements. Eng. Struct. 2016, 125, 546–565. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, C.; Chen, J. Utilization of coal fly ash for the production of glass-ceramics with unique performances: A brief review. J. Mater. Sci. Technol. 2014, 30, 1208–1212. [Google Scholar] [CrossRef]
- Wang, L.S.; Wang, Y.X.; Wei, S.U.; Wang, C.W.; Meng, X.S. Preparation of lightweight and high-strength ceramsite from highly doped coal fly ash. Trans. Nonferrous Met. Soc. China 2023, 33, 3885–3898. [Google Scholar] [CrossRef]
- Ma, S.; Yan, Q.; Zhang, N.; Wang, X.; Bai, J.; Zhong, R. Experimental Study on Load-Transfer Mechanism of Rockbolts Using Fiber Optic and Strain Gauge Monitoring. Int. J. Geomech. 2024, 24, 04024144. [Google Scholar] [CrossRef]
- Sun, G.; Gu, L.; Li, L.; Huo, Y.; Wang, Z.; Dang, H. A Novel Calculate Model of Shear Deformation and Relative Displacement of Pile–Soil Interface in Warm Frozen Soil Foundation. Buildings 2024, 14, 1459. [Google Scholar] [CrossRef]
- GB 50010-2010; Code for the Design of Concrete Structures. TransForyou Co., Ltd.: Beijing, China, 2011.
- Yang, Y.; Ying, X.; Guo, B.; He, Z. Collapse safety reserve of jacket offshore platforms subjected to rare intense earthquakes. Ocean Eng. 2017, 131, 36–47. [Google Scholar] [CrossRef]
Compressive Strength (MPa) | Flexural Strength (MPa) | Setting Time (Min) | |||
---|---|---|---|---|---|
3 d | 28 d | 3 d | 28 d | Initial Setting Time | Final Setting Time |
27.8 | 46.6 | 4.8 | 7.2 | 175 | 250 |
Aggregate Particle Size (mm) | 26 | 19 | 11.08 | 5.45 | 2.28 |
---|---|---|---|---|---|
Fractional sieve retention (%) | 2.7 | 2.3 | 35 | 46 | 7 |
Cumulative sieve retention (%) | 2.7 | 5 | 40 | 86 | 93 |
Diameter (mm) | Yield Strength (N/mm2) | Average Yield Strength (N/mm2) | Ultimate Strength (N/mm2) | Average Ultimate Strength (N/mm2) | Modulus of Elasticity (N/mm2) |
---|---|---|---|---|---|
16 | 473.84 | 471.06 | 686.88 | 650.66 | 2.05 × 105 |
16 | 468.28 | 689.15 | |||
18 | 480.23 | 479.06 | 648.86 | 667.47 | 2.07 × 105 |
18 | 477.88 | 652.45 | |||
20 | 501.28 | 499.89 | 666.53 | 688.12 | 2.09 × 105 |
20 | 498.49 | 668.41 |
Water (kg/m3) | Cement (kg/m3) | High-Titanium Heavy-Slag Crushed Stone (kg/m3) | High-Titanium Heavy-Slag Sand (kg/m3) | Fly-Ash Aggregate (kg/m3) | Fly Ash (kg/m3) | Silica Fume (kg/m3) | Water-Reducing Agent (kg/m3) |
---|---|---|---|---|---|---|---|
210 | 312.21 | 588.77 | 452.90 | 252.33 | 14.19 | 28.38 | 1.56 |
Water (kg/m3) | Cement (kg/m3) | Limestone Coarse Aggregate (kg/m3) | Limestone Fine Aggregate (kg/m3) | Fly Ash (kg/m3) | Silica Fume (kg/m3) | Water-Reducing Agent (kg/m3) |
---|---|---|---|---|---|---|
210 | 312.21 | 731.39 | 562.61 | 14.19 | 28.38 | 1.56 |
Specimen | L1 | L2 | L3 | L4 | L5 | L6 | L7 |
---|---|---|---|---|---|---|---|
Composite Part | HTC | HTC | HTC | HTC | HTC | HTC | OPC |
+ | 200 mm | 200 mm | 200 mm | 150 mm | 250 mm | 200 mm | |
Prefabricated Part | HTC | HTC | HTC | HTC | HTC | OPC | |
Section Dimensions (mm) | 200 × 400 | 200 × 400 | 200 × 400 | 200 × 400 | 200 × 400 | 200 × 400 | 200 × 400 |
Cover Thickness (mm) | 25 | 25 | 25 | 25 | 25 | 25 | 25 |
Erecting Bars | 2C10 | 2C10 | 2C10 | 2C10 | 2C10 | 2C10 | 2C10 |
Tensile Bars | 2C16 | 2C18 | 2C20 | 2C18 | 2C18 | 2C18 | 2C18 |
Stirrups | C8@10 | C8@10 | C8@10 | C8@10 | C8@10 | C8@10 | C8@10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Yu, Y.; Li, R.Y.M.; Wang, Z.; Li, L.; Guo, F.; Yu, L.; Deng, C. Study on the Flexural Deformation Behavior of High-Titanium Heavy-Slag Concrete Composite Beams: Material Application, Experimental Investigation, and Theoretical Refinement. Materials 2024, 17, 4721. https://doi.org/10.3390/ma17194721
Sun J, Yu Y, Li RYM, Wang Z, Li L, Guo F, Yu L, Deng C. Study on the Flexural Deformation Behavior of High-Titanium Heavy-Slag Concrete Composite Beams: Material Application, Experimental Investigation, and Theoretical Refinement. Materials. 2024; 17(19):4721. https://doi.org/10.3390/ma17194721
Chicago/Turabian StyleSun, Jinkun, Yun Yu, Rita Yi Man Li, Zilin Wang, Lindong Li, Feifei Guo, Liangliang Yu, and Chenxi Deng. 2024. "Study on the Flexural Deformation Behavior of High-Titanium Heavy-Slag Concrete Composite Beams: Material Application, Experimental Investigation, and Theoretical Refinement" Materials 17, no. 19: 4721. https://doi.org/10.3390/ma17194721
APA StyleSun, J., Yu, Y., Li, R. Y. M., Wang, Z., Li, L., Guo, F., Yu, L., & Deng, C. (2024). Study on the Flexural Deformation Behavior of High-Titanium Heavy-Slag Concrete Composite Beams: Material Application, Experimental Investigation, and Theoretical Refinement. Materials, 17(19), 4721. https://doi.org/10.3390/ma17194721