Radiation Resistance of High-Entropy Alloys CoCrFeNi and CoCrFeMnNi, Sequentially Irradiated with Kr and He Ions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Composition and Structure of Initial CoCrFeNi and CoCrFeMnNi HEAs
3.2. Composition and Structure of CoCrFeNi and CoCrFeMnNi HEAs, Irradiated by Krypton and Helium Ions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maloy, S.A.; Natesan, K.; Holcomb, D.E.; Fazio, C.; Yvon, P. Overview of Reactor Systems and Operational Environments for Structural Materials in Gen-IV Fission Reactors. In Structural Alloys for Nuclear Energy Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 23–49. ISBN 978-0-12-397046-6. [Google Scholar]
- Ortner, S. A Review of Structural Material Requirements and Choices for Nuclear Power Plant. Front. Nucl. Eng. 2023, 2, 1253974. [Google Scholar] [CrossRef]
- Zhang, Z.; Armstrong, D.E.J.; Grant, P.S. The Effects of Irradiation on CrMnFeCoNi High-Entropy Alloy and Its Derivatives. Prog. Mater. Sci. 2022, 123, 100807. [Google Scholar] [CrossRef]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-Entropy Alloy: Challenges and Prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Gao, M.C.; Yeh, J.-W.; Liaw, P.K.; Zhang, Y. (Eds.) High-Entropy Alloys; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-27011-1. [Google Scholar]
- Xia, S.; Wang, Z.; Yang, T.; Zhang, Y. Irradiation Behavior in High Entropy Alloys. J. Iron Steel Res. Int. 2015, 22, 879–884. [Google Scholar] [CrossRef]
- Pickering, E.J.; Carruthers, A.W.; Barron, P.J.; Middleburgh, S.C.; Armstrong, D.E.J.; Gandy, A.S. High-Entropy Alloys for Advanced Nuclear Applications. Entropy 2021, 23, 98. [Google Scholar] [CrossRef] [PubMed]
- Feltrin, A.C.; Xing, Q.; Akinwekomi, A.D.; Waseem, O.A.; Akhtar, F. Review of Novel High-Entropy Protective Materials: Wear, Irradiation, and Erosion Resistance Properties. Entropy 2022, 25, 73. [Google Scholar] [CrossRef]
- Was, G.S. Fundamentals of Radiation Materials Science; Springer: New York, NY, USA, 2017; ISBN 978-1-4939-3436-2. [Google Scholar]
- Trinkaus, H.; Singh, B.N. Helium Accumulation in Metals during Irradiation—Where Do We Stand? J. Nucl. Mater. 2003, 323, 229–242. [Google Scholar] [CrossRef]
- Jossou, E.; Assefa, T.A.; Suzana, A.F.; Wu, L.; Campbell, C.; Harder, R.; Cha, W.; Kisslinger, K.; Sun, C.; Gan, J.; et al. Three-Dimensional Strain Imaging of Irradiated Chromium Using Multi-Reflection Bragg Coherent Diffraction. npj Mater. Degrad. 2022, 6, 99. [Google Scholar] [CrossRef]
- Shi, S.; He, M.-R.; Jin, K.; Bei, H.; Robertson, I.M. Evolution of Ion Damage at 773K in Ni- Containing Concentrated Solid-Solution Alloys. J. Nucl. Mater. 2018, 501, 132–142. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Kirk, M.A.; Hashimoto, N.; Yeh, J.-W.; Liu, X.; Chen, Y. Irradiation Effects on Al0.3CoCrFeNi and CoCrMnFeNi High-Entropy Alloys, and 316H Stainless Steel at 500 °C. J. Nucl. Mater. 2020, 539, 152324. [Google Scholar] [CrossRef]
- Chen, D.; Tong, Y.; Li, H.; Wang, J.; Zhao, Y.L.; Hu, A.; Kai, J.J. Helium Accumulation and Bubble Formation in FeCoNiCr Alloy under High Fluence He+ Implantation. J. Nucl. Mater. 2018, 501, 208–216. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, S.; Sun, J.; Tai, P.; Sheng, Y.; Zhao, Y.; Yeli, G.; Lin, W.; Liu, S.; Kai, W.; et al. Diffusion Controlled Helium Bubble Formation Resistance of FeCoNiCr High-Entropy Alloy in the Half-Melting Temperature Regime. J. Nucl. Mater. 2019, 526, 151747. [Google Scholar] [CrossRef]
- Yang, L.; Ge, H.; Zhang, J.; Xiong, T.; Jin, Q.; Zhou, Y.; Shao, X.; Zhang, B.; Zhu, Z.; Zheng, S.; et al. High He-Ion Irradiation Resistance of CrMnFeCoNi High-Entropy Alloy Revealed by Comparison Study with Ni and 304SS. J. Mater. Sci. Technol. 2019, 35, 300–305. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Liu, X.; Chen, Y.; Yeh, J.-W.; Tseng, K.-K.; Natesan, K. Irradiation Effects in High Entropy Alloys and 316H Stainless Steel at 300 °C. J. Nucl. Mater. 2018, 510, 421–430. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, S.; Xia, S.; Zhang, Y.; Wang, Y.; Yang, T. He Behavior in Ni and Ni-Based Equiatomic Solid Solution Alloy. J. Nucl. Mater. 2018, 505, 200–206. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Li, M. Helium Bubble Formation in Nickel under In-Situ Krypton and Helium Ions Dual-Beam Irradiation. J. Nucl. Mater. 2022, 558, 153342. [Google Scholar] [CrossRef]
- Xu, S.; Zheng, C.; Li, X.; Gao, N.; Huang, Z.; Zhang, J.; Wei, C.; Zhang, C. The Synergetic Effect of He and Kr Irradiation on Helium Bubble Evolution in SiC/SiC Composite: Combining in-Situ TEM Observation with MD Simulation. J. Mater. Sci. Technol. 2024, 197, 238–246. [Google Scholar] [CrossRef]
- Huang, H.-C.; Zhang, L.; Malladi, G.; Dadap, J.I.; Manandhar, S.; Kisslinger, K.; Vemuri, R.S.R.; Shutthanandan, V.; Bakhru, H.; Osgood, R.M. Radiation Damage by Light- and Heavy-Ion Bombardment of Single-Crystal LiNbO3. Opt. Mater. Express 2015, 5, 1071. [Google Scholar] [CrossRef]
- Amanzhulov, B.; Ivanov, I.; Uglov, V.; Zlotski, S.; Ryskulov, A.; Kurakhmedov, A.; Koloberdin, M.; Zdorovets, M. Composition and Structure of NiCoFeCr and NiCoFeCrMn High-Entropy Alloys Irradiated by Helium Ions. Materials 2023, 16, 3695. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Baczmanski, A.; Lark, R.J.; Skrzypek, S.J. Application of Non-Linear Sin2ψ Method for Stress Determination Using X-ray Diffraction; Trans Tech Publications: Uetikon-Zuerich, Switzerland; Coimbra, Portugal, 2002; Volumes 404–407, pp. 29–34. [Google Scholar]
- Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles. J. Theor. Appl. Phys. 2012, 6, 6. [Google Scholar] [CrossRef]
- Gallet, J.; Perez, M.; Guillou, R.; Ernould, C.; Le Bourlot, C.; Langlois, C.; Beausir, B.; Bouzy, E.; Chaise, T.; Cazottes, S. Experimental measurement of dislocation density in metallic materials: A quantitative comparison between measurements techniques (XRD, R-ECCI, HR-EBSD, TEM). Mater. Charact. 2023, 199, 112842. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The Stopping and Range of Ions in Matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Chu, W.-K.; Mayer, J.W.; Nicolet, M.-A. Backscattering Spectrometry; Academic Press: New York, NY, USA, 1978; ISBN 978-0-12-173850-1. [Google Scholar]
- Rehn, L.E.; Baldo, P.M. Detection of Near-Surface 52Cr Segregation in Irradiated 51V(Cr) by Rbs. MRS Proc. 1986, 82, 499. [Google Scholar] [CrossRef]
- Gao, J.; Bao, L.; Huang, H.; Li, Y.; Lei, Q.; Deng, Q.; Liu, Z.; Yang, G.; Shi, L. ERDA, RBS, TEM and SEM Characterization of Microstructural Evolution in Helium-Implanted Hastelloy N Alloy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 399, 62–68. [Google Scholar] [CrossRef]
- Rehn, L.E.; Okamoto, P.R.; Baldo, P.M. Radiation-Induced Segregation in Ternary Alloys: Ni-Ge-Al and Ni-Ge-Si. J. Nucl. Mater. 1985, 135, 155–159. [Google Scholar] [CrossRef]
- Averback, R.S.; Rehn, L.E.; Wagner, W.; Ehrhart, P. The Effect of Primary Recoil Spectrum on Radiation Induced Segregation in Nickel-Silicon Alloys. J. Nucl. Mater. 1983, 118, 83–90. [Google Scholar] [CrossRef]
- Fan, Z.; Zhong, W.; Jin, K.; Bei, H.; Osetsky, Y.N.; Zhang, Y. Diffusion-Mediated Chemical Concentration Variation and Void Evolution in Ion-Irradiated NiCoFeCr High-Entropy Alloy. J. Mater. Res. 2021, 36, 298–310. [Google Scholar] [CrossRef]
- Lu, C.; Yang, T.; Jin, K.; Gao, N.; Xiu, P.; Zhang, Y.; Gao, F.; Bei, H.; Weber, W.J.; Sun, K.; et al. Radiation-Induced Segregation on Defect Clusters in Single-Phase Concentrated Solid-Solution Alloys. Acta Mater. 2017, 127, 98–107. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Osetsky, Y.N.; Tong, Y.; Harrison, R.; Donnelly, S.E.; Chen, D.; Wang, Y.; Bei, H.; Sales, B.C.; et al. Effects of 3d Electron Configurations on Helium Bubble Formation and Void Swelling in Concentrated Solid-Solution Alloys. Acta Mater. 2019, 181, 519–529. [Google Scholar] [CrossRef]
- Barr, C.M.; Nathaniel, J.E.; Unocic, K.A.; Liu, J.; Zhang, Y.; Wang, Y.; Taheri, M.L. Exploring Radiation Induced Segregation Mechanisms at Grain Boundaries in Equiatomic CoCrFeNiMn High Entropy Alloy under Heavy Ion Irradiation. Scr. Mater. 2018, 156, 80–84. [Google Scholar] [CrossRef]
- Ivanov, I.; Amanzhulov, B.; Uglov, V.; Zlotski, S.; Kurakhmedov, A.; Koloberdin, M.; Sapar, A.; Ungarbayev, Y.; Zdorovets, M. Structural Changes in High-Entropy Alloys CoCrFeNi and CoCrFeMnNi, Irradiated by He Ions at a Temperature of 700 °C. Materials 2024, 17, 4383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, C.; Zhu, Z.; Huang, H.; Lu, Y.; Wang, T.; Li, T. Effects of He-Ion Irradiation on the Microstructures and Mechanical Properties of the Novel Co-Free V CrFeMnNi High-Entropy Alloys. J. Nucl. Mater. 2022, 572, 154074. [Google Scholar] [CrossRef]
- Tong, Y.; Velisa, G.; Zhao, S.; Guo, W.; Yang, T.; Jin, K.; Lu, C.; Bei, H.; Ko, J.Y.P.; Pagan, D.C.; et al. Evolution of Local Lattice Distortion under Irradiation in Medium- and High-Entropy Alloys. Materialia 2018, 2, 73–81. [Google Scholar] [CrossRef]
- Pu, G.; Zhang, K.; Yang, L.; Luo, Y.; Chen, S.; Li, J.; Xue, Y.; Liu, B.; Yang, H.; Ye, Z.; et al. Irradiation-Enhanced Superficial Modification and Evolution of Mechanical Behavior in TaTiNbZr Refractory High Entropy Alloy Films Exposed to Low Energy Helium Plasma. J. Nucl. Mater. 2023, 577, 154337. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, H.; Gao, X.; Ren, C.; Gao, J.; Zhang, H.; Zheng, S.; Jin, Q.; Zhao, Y.; Lu, C.; et al. A Promising New Class of Irradiation Tolerant Materials: Ti2ZrHfV0.5Mo0.2 High-Entropy Alloy. J. Mater. Sci. Technol. 2019, 35, 369–373. [Google Scholar] [CrossRef]
- Mukherjee, P.; Sarkar, A.; Bhattacharya, M.; Gayathri, N.; Barat, P. Post-Irradiated Microstructural Characterisation of Cold-Worked SS316L by X-ray Diffraction Technique. J. Nucl. Mater. 2009, 395, 37–44. [Google Scholar] [CrossRef]
- Taylor, C.A.; Lang, E.; Kotula, P.G.; Goeke, R.; Snow, C.S.; Wang, Y.; Hattar, K. Helium Bubbles and Blistering in a Nanolayered Metal/Hydride Composite. Materials 2021, 14, 5393. [Google Scholar] [CrossRef] [PubMed]
Ions | Energy, keV | Temperature of Irradiation, °C | Average Flux, cm−2 s−1 | Average Irradiation Time | Average Fluence, cm−2 |
---|---|---|---|---|---|
Kr14+ | 280 | 25 | 1.95 × 1011 | 8 h 30 min | 5 × 1015 |
He2+ | 40 | 25 | 7.42 × 1012 | 7 h 10 min | 2 × 1017 |
Sample | Concentration of Elements, at. % | ||||
---|---|---|---|---|---|
Co | Cr | Fe | Mn | Ni | |
CoCrFeNi (initial) | 24.7 ± 0.2 | 25.7 ± 0.1 | 25.3 ± 0.1 | - | 24.3 ± 0.2 |
CoCrFeNi (Kr14+, 5 × 1015 cm−2) | 24.4 ± 0.2 | 25.4 ± 0.1 | 26.1 ± 0.1 | - | 24.1 ± 0.2 |
CoCrFeNi (Kr14+, 5 × 1015 cm−2) and (He2+, 2 × 1017 cm−2) | 25.8 ± 0.2 | 24.4 ± 0.1 | 24.9 ± 0.1 | - | 25.1 ± 0.2 |
CoCrFeMnNi (initial) | 19.5 ± 0.2 | 20.3 ± 0.1 | 19.8 ± 0.1 | 20.6 ± 0.1 | 19.8 ± 0.2 |
CoCrFeMnNi (Kr14+, 5 × 1015 cm−2) | 18.7 ± 0.2 | 20.2 ± 0.1 | 20.2 ± 0.1 | 20.1 ± 0.1 | 20.8 ± 0.2 |
CoCrFeMnNi (Kr14+, 5 × 1015 cm−2) and (He2+, 2 × 1017 cm−2) | 20.3 ± 0.2 | 21.1 ± 0.1 | 19.4 ± 0.1 | 20.8 ± 0.1 | 19.4 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanzhulov, B.; Ivanov, I.; Uglov, V.; Zlotski, S.; Ryskulov, A.; Kurakhmedov, A.; Sapar, A.; Ungarbayev, Y.; Koloberdin, M.; Zdorovets, M. Radiation Resistance of High-Entropy Alloys CoCrFeNi and CoCrFeMnNi, Sequentially Irradiated with Kr and He Ions. Materials 2024, 17, 4751. https://doi.org/10.3390/ma17194751
Amanzhulov B, Ivanov I, Uglov V, Zlotski S, Ryskulov A, Kurakhmedov A, Sapar A, Ungarbayev Y, Koloberdin M, Zdorovets M. Radiation Resistance of High-Entropy Alloys CoCrFeNi and CoCrFeMnNi, Sequentially Irradiated with Kr and He Ions. Materials. 2024; 17(19):4751. https://doi.org/10.3390/ma17194751
Chicago/Turabian StyleAmanzhulov, Bauyrzhan, Igor Ivanov, Vladimir Uglov, Sergey Zlotski, Azamat Ryskulov, Alisher Kurakhmedov, Asset Sapar, Yerulan Ungarbayev, Mikhail Koloberdin, and Maxim Zdorovets. 2024. "Radiation Resistance of High-Entropy Alloys CoCrFeNi and CoCrFeMnNi, Sequentially Irradiated with Kr and He Ions" Materials 17, no. 19: 4751. https://doi.org/10.3390/ma17194751
APA StyleAmanzhulov, B., Ivanov, I., Uglov, V., Zlotski, S., Ryskulov, A., Kurakhmedov, A., Sapar, A., Ungarbayev, Y., Koloberdin, M., & Zdorovets, M. (2024). Radiation Resistance of High-Entropy Alloys CoCrFeNi and CoCrFeMnNi, Sequentially Irradiated with Kr and He Ions. Materials, 17(19), 4751. https://doi.org/10.3390/ma17194751