Application of New Filling Material Based on Combined Heat and Power Waste for Sewage Treatment in Constructed Wetlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Installation and Sample Analysis
2.2. Statistical Methodology and Data Refining
- for each of the variables, the number of bars was determined;
- for each of the variables, bar widths were determined in proportion to the range;
- the smallest width was selected and the global number of bars for the full range was recalculated;
- the target width of the bars () was selected using the ‘pretty’ algorithm, where the previously calculated global number of bars was provided as a hint.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Jóźwiakowski, K.; Marzec, M.; Juśko, A.K.; Gizińska-Górnaa, M.; Pytka-Woszczyło, A.; Malik, A.; Listosz, A.; Gajewska, M. 25 Years of research and experiences about the application of constructed wetlands in southeastern Poland. Ecol. Eng. 2019, 127, 440–453. [Google Scholar] [CrossRef]
- Kołecka, K.; Obarska-Pempkowiak, H.; Gajewska, M. Treatment wetlands as the implementation of the circular economy. Annu. Set Environ. Prot. 2018, 20, 1350–1371. (In Polish) [Google Scholar]
- Karolinczak, B.; Miłaszewski, R.; Sztuk, A. Cost-effectiveness analysis of different technological variants of single-house sewage treatment plants. Annu. Set Environ. Prot./Rocz. Ochr. Sr. 2015, 17, 726–746. (In Polish) [Google Scholar]
- Yang, L.; Jiao, Y.; Xu, X.; Pan, Y.; Su, C.; Duan, X.; Sun, H.; Liu, S.; Wang, S.; Shao, Z. Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustain. Chem. Eng. 2022, 10, 1899–1909. [Google Scholar] [CrossRef]
- Obarska-Pempkowiak, H.; Gajewska, M.; Wojciechowska, E.; Pempkowiak, J. Domestic Wastewater Treatment/Treatment Wetlands for Environmental Pollution Control; Springer International Publishing: Cham, Switzerland, 2015; pp. 15–87. [Google Scholar] [CrossRef]
- Jakubowicz, P.; Fitobór, K.; Gajewska, M.; Drewnowska, M. Detection and Removal of Priority Substances and Emerging Pollutants from Stormwater: Case Study of the Kołobrzeska Collector, Gdańsk, Poland. Sustainability 2022, 14, 1105. [Google Scholar] [CrossRef]
- Karolinczak, B.; Dąbrowski, W. Effectiveness of septage pre-treatment in subsurface vertical flow constructed wetlands. Water Sci. Technol. 2017, 76, 2544–2553. [Google Scholar] [CrossRef] [PubMed]
- Kołecka, K.; Obarska-Pempkowiak, H.; Gajewska, M. Polish experience in operation of sludge treatment reed beds. Ecol. Eng. 2018, 120, 405–410. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment. Water 2010, 2, 530. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Brix, H.; Schierup, H. Danish experience with sewage treatment in constructed wetlands. In Constructed Wetlands for Wastewater Treatment; Hammer, D.A., Ed.; CRC Press: Boca Raton, FL, USA, 1989; pp. 565–573. [Google Scholar]
- Kickuth, R. Degradation and incorporation of nutrients from rural wastewaters by plant rhizosphere under limnic conditions. In Utilization of Manure by Land Spreading; The Commission of the European Communities: Luxembourg, 1977; pp. 335–343. [Google Scholar]
- Vymazal, J.; Kröpfelová, L. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Brix, H.; Arias, C. The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines. Ecol. Eng. 2005, 25, 491–500. [Google Scholar] [CrossRef]
- Nivala, J.; van Afferden, M.; Hasselbach, R.; Langergraber, G.; Molle, P.; Rustige, H.; Nowak, J. The new German standard on constructed wetland systems for treatment of domestic and municipal wastewater. Water Sci. Technol. 2018, 78, 2414–2426. [Google Scholar] [CrossRef]
- Ji, Z.H.; Feng, C.L.; Wu, X.F.; Zhou, S.Y.; Huang, H.M. Research progress on filler application and purification mechanisms in constructed wetland wastewater treatment system. Chin. J. Ecol. 2016, 35, 2234–2243. [Google Scholar] [CrossRef]
- Verlicchi, P.; Zambello, E. How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Sci. Total Environ. 2013, 470C–471C, 1281–1306. [Google Scholar] [CrossRef]
- Zhao, X.H.; Zhao, Y.; Kearney, P. Transformation of beneficially reused aluminium sludge to potential P and Al resource after employing as P-trapping material for wastewater treatment in constructed wetland. Chem. Eng. J. 2011, 174, 206–212. [Google Scholar] [CrossRef]
- Pinho, H.; Vaz, M.M.N.; Mateus, D. Comparative evaluation of low cost materials as constructed wetland filling media. In Proceedings of the International Conference of Computational Methods in Sciences and Engineering, Thessaloniki, Greece, 21–25 April 2017; Volume 1906. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, K.; Zhang, Z.; Shang, X.; Wu, F. Waste Brick as Constructed Wetland Fillers to Treat the Tail Water of Sewage Treatment Plant. Bull. Environ. Contam. Toxicol. 2020, 104, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Chiou, I.-J.; Wang, K.-S.; Chen, C.-H.; Lin, Y.-T. Lightweight aggregate made from sewage sludge and incinerated ash. Waste Manag. 2006, 26, 1453–1461. [Google Scholar] [CrossRef]
- Adám, K.; Krogstad, T.; Vråle, L.; Søvik, A.; Jenssen, P. Phosphorus retention in the filter materials shellsand and Filtralite P ®—Batch and column experiment with synthetic P solution and secondary wastewater. Ecol. Eng. 2007, 29, 200–208. [Google Scholar] [CrossRef]
- Satish, C.; Berntsson, L. Lightweight Aggregate Concrete: Science, Technology and Applications; Noyes Publication, Wiliam Andrew Publishing: Norwich, NY, USA, 2002; ISBN 0-8155-1486-7. [Google Scholar]
- Zukri, A.; Nazir, R.; Nissa, K.; Moayedi, H. Physical and Mechanical Properties of Lightweight Expanded Clay Aggregate (LECA). MATEC Web Conf. 2018, 250, 01016. [Google Scholar] [CrossRef]
- Mæhlum, T.; Jenssen, P.; Warner, W.S. Cold-climate constructed wetlands. Water Sci. Technol. 1995, 32, 95–101. [Google Scholar] [CrossRef]
- Öövel, M.; Tooming, A.; Mauring, T.; Mander, Ü. Schoolhouse Wastewater Purification in a LWA-Filled Hybrid Constructed Wetland in Estonia. Ecol. Eng. 2007, 29, 17–26. [Google Scholar] [CrossRef]
- Łuczaj, K.; Sokołowski, J.; Świtka, K.J.; Kabaciński, M. Method and a System for Producing a Lightweight Ceramic Aggregate, Particularly from Coal Ash. United States Patent US9938196B2, 10 April 2018. [Google Scholar]
- Przychodzień, P.; Katzer, J. Properties of Structural Lightweight Aggregate Concrete Based on Sintered Fly Ash and Modified with Exfoliated Vermiculite. Materials 2021, 14, 5922. [Google Scholar] [CrossRef]
- PN-EN 13055-1:2003; Lightweight Aggregates for Concrete, Mortar, and Grout. Polish Committee for Standardization: Warsaw, Poland, 2003.
- PN-EN 13055-2:2006; Lightweight Aggregates for Bituminous Mixtures and Surface Treatments, Unbound and Bound Applications. Polish Committee for Standardization: Warsaw, Poland, 2006.
- Małaszkiewicz, D.; Jastrzębski, D. Lightweight self-compacting concrete with sintered fly-ash aggregate. Przegląd Nauk. Inżynieria I Kształtowanie Sr. 2018, 27, 328–337. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for Examination of Water and Wastewater, 21st ed.; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Gaigall, D. Rothman–Woodroofe symmetry test statistic revisited. Comput. Stat. Data Anal. 2020, 142, 106837. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Sturges, H.A. The choice of a class interval. J. Am. Stat. Assoc. 1926, 21, 65–66. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: Oxfordshire, UK, 1986; ISBN 9780412246203. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 22 April 2023).
- Ivanović, B.; Milośević, B.; Obradović, M. Symmetry: Testing for Symmetry of Data and Model Residuals. 2020. Available online: https://CRAN.R-project.org/package=symmetry (accessed on 19 June 2021).
- Gajewska, M.; Obarska-Pempkowiak, H. Efficiency of pollutant removal by five multistage constructed wetlands in a temperate climate. Environ. Prot. Eng. 2011, 37, 27–36. [Google Scholar]
- Jóźwiakowski, K. Badania skuteczności oczyszczania ścieków w wybranych systemach gruntowo-roślinnych. Infrastruktura i Ekologia Terenów Wiejskich 2012. [Google Scholar]
- Gajewska, M.; Tuszyńska, A.; Obarska-Pempkowiak, H. Influence of configurations of the beds on contaminations removal in hybrid constructed wetlands. Pol. J. Environ. Stud. 2004, 13, 149–152. [Google Scholar]
- Molle, P.; Lienard, A.; Boutin, C.; Merlin, G.; Iwema, A. How to treat raw sewage with constructed wetlands: An overview of the French systems. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2005, 51, 11–21. [Google Scholar] [CrossRef]
- Chen, Z.-M.; Chen, B.; Zhou, J.; Li, Z.; Zhou, Y.; Xi, X.; Chen, G. A Vertical Subsurface-Flow Constructed Wetland in Beijing. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1986–1997. [Google Scholar] [CrossRef]
- Puchlik, M. Constructed wetlands aided with bio-preparation to neutralize wastewater from a small fruit and vegetable processing plant with high load pollutants. E3S Web Conf. 2019, 100, 00067. [Google Scholar] [CrossRef]
- Obarska-Pempkowiak, H.; Kołecka, K. Experiences of Salix viminalis application to water and sewage treatment. Ecohydrol. Hydrobiol. 2007, 7, 235–241. [Google Scholar] [CrossRef]
- Paruch, A.M.; Mæhlum, T.; Obarska-Pempkowiak, H.; Gajewska, M.; Wojciechowska, E.; Ostojski, A. Rural domestic wastewater treatment in Norway and Poland: Experiences, cooperation and concepts on the improvement of constructed wetland technology. Water Sci. Technol. 2011, 63, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; D’Angelo, E. Soil processes regulating water quality in wetlands. In Global Wetlands Old World and New; Mitch, W.J., Ed.; Elsevier: Amsterdam, The Netherland, 1994; pp. 309–324. [Google Scholar]
- Pytka-Woszczyło, A.; Różańska-Boczula, M.; Gizińska-Górna, M.; Marzec, M.; Listosz, A.; Jóźwiakowski, K. Efficiency of Filters Filled with Rockfos for Phosphorus Removal from Domestic Sewage. Adv. Sci. Technol. Res. J. 2022, 16, 176–188. [Google Scholar] [CrossRef]
- Gajewska, M.; Obarska-Pempkowiak, H. The role of SSVF and SSHF beds in concentrated wastewater treatment, design recommendation. Water Sci. Technol. 2011, 64, 431–439. [Google Scholar] [CrossRef]
Parameter | Whole Research Period | Vegetation Period | Non-Vegetation Period |
---|---|---|---|
Period | Load, g·m−2·d−1 | BOD5 | COD | SS |
---|---|---|---|---|
Whole period | ||||
Veg. period | ||||
Non-veg. period | ||||
Period | Load, g·m−2·d−1 | TN | N-NH4 | TP |
---|---|---|---|---|
Whole period | ||||
Veg. period | ||||
Non-veg. period | ||||
Period | Normality Test | Paired Test | Δη | ||||
---|---|---|---|---|---|---|---|
W Statistics | p-Value | Version | Statistics | p-Value | |||
Non-veg | 0.96281 | 0.4731 | T | t = 10.362 | 0.040 | ||
Veg | 0.91165 | 0.0920 | T | t = 17.178 | 0.027 | ||
Non-veg | 0.96815 | 0.5986 | T | t = 7.468 | 0.033 | ||
Veg | 0.95179 | 0.4538 | T | t = 14.304 | 0.029 | ||
Non-veg | 0.91898 | 0.0486 | Wilcoxon | V = 325 | 0.076 | ||
Veg | 0.95450 | 0.5000 | T | t = 9.7821 | 0.042 | ||
Non-veg | 0.96365 | 0.4918 | T | t = 14.618 | 0.090 | ||
Veg | 0.84572 | 0.0073 | Wilcoxon | V = 171 | 0.016 | ||
Non-veg | 0.95978 | 0.4102 | T | t = 2.1204 | 0.04451 | 0.014 | |
Veg | 0.95945 | 0.5909 | T | t = 4.347 | 0.028 | ||
Non-veg | 0.94714 | 0.2160 | T | t = −2.4828 | 0.02042 | −0.021 | |
Veg | 0.86944 | 0.0174 | Wilcoxon | V = 11 | −0.031 | ||
Non-veg | 0.94302 | 0.5566 | T | t = −3.845 | 0.003238 | −0.040 | |
Veg | 0.85908 | 0.0476 | Wilcoxon | V = 0 | −0.082 |
BOD5:COD | BOD5:TN | |
---|---|---|
In | ||
Out Gravel | ||
Out Certyd |
DO mg·dm−3 | pH | Conductivity | Alkalinity | |
---|---|---|---|---|
In | ||||
Out Gravel | ||||
Out Certyd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinowski, P.; Dąbrowski, W.; Karolinczak, B. Application of New Filling Material Based on Combined Heat and Power Waste for Sewage Treatment in Constructed Wetlands. Materials 2024, 17, 389. https://doi.org/10.3390/ma17020389
Malinowski P, Dąbrowski W, Karolinczak B. Application of New Filling Material Based on Combined Heat and Power Waste for Sewage Treatment in Constructed Wetlands. Materials. 2024; 17(2):389. https://doi.org/10.3390/ma17020389
Chicago/Turabian StyleMalinowski, Paweł, Wojciech Dąbrowski, and Beata Karolinczak. 2024. "Application of New Filling Material Based on Combined Heat and Power Waste for Sewage Treatment in Constructed Wetlands" Materials 17, no. 2: 389. https://doi.org/10.3390/ma17020389
APA StyleMalinowski, P., Dąbrowski, W., & Karolinczak, B. (2024). Application of New Filling Material Based on Combined Heat and Power Waste for Sewage Treatment in Constructed Wetlands. Materials, 17(2), 389. https://doi.org/10.3390/ma17020389