Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy
Abstract
:1. Introduction
Fungal Species | Feedstocks/ Substrate | Sterilization Method | Inoculation Method | Packing Method | Temperature (°C) | Grow- Time | Dry Method | Application |
---|---|---|---|---|---|---|---|---|
Trametes versicolor [14] | Flax, flax dust, flax long treated fibers, flax long untreated fibers, flax waste, wheat straw dust, wheat | Autoclaved at 121 °C for 20 min | 10% grain spawn | The 20% wt of fibers, 70% wt of sterile demineralized H2O, and 10% wt of mycelium; spawn was mixed and put in the PVC molds | 28 °C | 16 days | 70 °C for 5 to 10 h | Thermal insulation |
Ganoderma lucidum [15] | Sawdust wood | Not specified | Inoculated into molds | In polymer bag | 25–35 °C | 14 days | Heat processing above 70 °C, 5% moisture content | Foams/The core of sandwich structures |
Coriolus (Trametes) versicolor and Pleurotus ostreatus [16] | Hemp hurd, wood chips, hemp mat, hemp fibers, non-woven mats | Boiling water for 100 min or 0.3% hydrogen-peroxide | 10% or 20% pre-grown spawn cultivated on rye | Not specified | Room temperature | 30 days | Oven at 125 °C and dry for 2 h | Foam |
Ganoderma lucidum and Pleurotus ostreatus [17] | Cellulose and cellulose-PDB | Autoclaved at 120 °C for 15 min | Agar plug | Not specified | 25–30 °C | 20 days | Oven for 2 h at 60 °C | Fibrous film |
2. Materials and Methods
2.1. Substrate Preparation of Mycelium-Based Composites
2.2. Inoculation
2.3. Incubation
2.4. Dry Method
2.5. Testing and Assessing Sound Absorption of Mycelium-Based Composites
3. Results and Discussion
3.1. Testing and Assessing Sound Absorption of Mycelium-Based Composites
3.2. Sound Absorption of the Mycelium-Based Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MBCs | Mycelium-based composites |
SHC | Shredded cardboard content |
FCL | Fine cardboard sample |
References
- Alemu, D.; Tafesse, M.; Mondal, A.K. Mycelium-Based Composite: The Future Sustainable Biomaterial. Int. J. Biomater. 2022, 2022, 8401528. [Google Scholar] [CrossRef] [PubMed]
- Barclay, G.; Sabina, A.; Graham, G. Population health and technology: Placing people first. Am. J. Public Health 2014, 104, 2246–2247. [Google Scholar] [CrossRef] [PubMed]
- Voukkali, I.; Papamichael, I.; Loizia, P.; Zorpas, A.A. Urbanization and solid waste production: Prospects and challenges. Environ. Sci. Pollut. Res. Int. 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hoornweg, D.; Bhada-Tata, P.; Kennedy, C. Environment: Waste production must peak this century. Nature 2013, 502, 615–617. [Google Scholar] [CrossRef]
- Joshi, K.; Meher, M.K.; Poluri, K.M. Fabrication and Characterization of Bioblocks from Agricultural Waste Using Fungal Mycelium for Renewable and Sustainable Applications. ACS Appl. Bio Mater. 2020, 3, 1884–1892. [Google Scholar] [CrossRef]
- Vandelook, S.; Elsacker, E.; Van Wylick, A.; De Laet, L.; Peeters, E. Current state and future prospects of pure mycelium materials. Fungal Biol. Biotechnol. 2021, 8, 20. [Google Scholar] [CrossRef]
- Vasatko, H.; Gosch, L.; Jauk, J.; Stavric, M. Basic Research of Material Properties of Mycelium-Based Composites. Biomimetics 2022, 7, 51. [Google Scholar] [CrossRef]
- Zimele, Z.; Irbe, I.; Grinins, J.; Bikovens, O.; Verovkins, A.; Bajare, D. Novel Mycelium-Based Biocomposites (MBB) as Building Materials. J. Renew. Mater. 2020, 8, 1067–1076. [Google Scholar] [CrossRef]
- Nicolás, C.; Martin-Bertelsen, T.; Floudas, D.; Bentzer, J.; Smits, M.; Johansson, T.; Troein, C.; Persson, P.; Tunlid, A. The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME J. 2019, 13, 977–988. [Google Scholar] [CrossRef]
- Yang, L.; Park, D.; Qin, Z. Material Function of Mycelium-Based Bio-Composite: A Review. Front. Mater. 2021, 8, 737377. [Google Scholar] [CrossRef]
- Huang, W.; van Bodegom, P.M.; Declerck, S.; Heinonsalo, J.; Cosme, M.; Viskari, T.; Liski, J.; Soudzilovskaia, N.A. Mycelium chemistry differs markedly between ectomycorrhizal and arbuscular mycorrhizal fungi. Commun. Biol. 2022, 5, 398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, J.; Fan, X.; Yu, X. Naturally grown mycelium-composite as sustainable building insulation materials. J. Clean. Prod. 2022, 342, 130784. [Google Scholar] [CrossRef]
- Karana, E.; Barati, B.; Giaccardi, E. Living Artefacts: Conceptualizing Livingness as a Material Quality in Everyday Artefacts. Int. J. Des. 2020, 14, 37–53. [Google Scholar]
- Elsacker, E.; Vandelook, S.; Van Wylick, A.; Ruytinx, J.; De Laet, L.; Peeters, E. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 2020, 725, 138431. [Google Scholar] [CrossRef] [PubMed]
- Tsao, Y. Characterization of Mycelium-Based Composites as Foam-like Wall Insulation Material. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2020. [Google Scholar]
- Lelivelt, R.J.J. The Mechanical Possibilities of Mycelium Materials. Master’s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2015. [Google Scholar]
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Heredia-Guerrero, J.A.; Athanassiou, A. Advanced Materials from Fungal Mycelium: Fabrication and Tuning of Physical Properties. Sci. Rep. 2017, 7, 41292. [Google Scholar] [CrossRef] [PubMed]
- Jamir, L.; Nongkynrih, B.; Gupta, S.K. Community noise pollution in urban India: Need for public health action. Indian J. Community Med. Off. Publ. Indian Assoc. Prev. Soc. Med. 2014, 39, 8–12. [Google Scholar]
- Ersoy, S.; Kucuk, H. Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Appl. Acoust. 2009, 70, 215–220. [Google Scholar] [CrossRef]
- Saatchi, D.; Oh, S.; Oh, I.-K. Biomimetic and Biophilic Design of Multifunctional Symbiotic Lichen–Schwarz Metamaterial. Adv. Funct. Mater. 2023, 33, 2214580. [Google Scholar] [CrossRef]
- EN ISO 845:2009; Cellular Plastics and Rubbers-Determination of Apparent Density. Comite Europeen de Normalisation: Geneva, Switzerland, 24 June 2009.
- Gwon, J.H.; Park, H.; Eom, A.H. Effect of Temperature, pH, and Media on the Mycelial Growth of Tuber koreanum. Mycobiology 2022, 50, 238–243. [Google Scholar] [CrossRef]
- Hu, Y.; Xue, F.; Chen, Y.; Qi, Y.; Zhu, W.; Wang, F.; Wen, Q.; Shen, J. Effects and Mechanism of the Mycelial Culture Temperature on the Growth and Development of Pleurotus ostreatus (Jacq.) P. Kumm. Horticulturae 2023, 9, 95. [Google Scholar] [CrossRef]
- Girometta, C.; Picco, A.M.; Baiguera, R.M.; Dondi, D.; Babbini, S.; Cartabia, M.; Pellegrini, M.; Savino, E. Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability 2019, 11, 281. [Google Scholar] [CrossRef]
- ISO 10534-2:2023; Acoustics. Determination of Acoustic Properties in Impedance Tubes Part 2: Two-Microphone Technique for Normal Sound Absorption Coefficient and Normal Surface Impedance. ISO: Geneva, Switzerland, October 2023.
- Nussbaumer, M.; Van Opdenbosch, D.; Engelhardt, M.; Briesen, H.; Benz, J.P.; Karl, T. Material characterization of pressed and unpressed wood–mycelium composites derived from two Trametes species. Environ. Technol. Innov. 2023, 30, 103063. [Google Scholar] [CrossRef]
- Appels, F.V.W.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.M.B.; Dijksterhuis, J.; Krijgsheld, P.; Wösten, H.A.B. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater. Des. 2019, 161, 64–71. [Google Scholar] [CrossRef]
- Cherradi, Y.; Rosca, I.C.; Cerbu, C.; Kebir, H.; Guendouz, A.; Benyoucef, M. Acoustic properties for composite materials based on alfa and wood fibers. Appl. Acoust. 2021, 174, 107759. [Google Scholar] [CrossRef]
- Hassan, T.; Jamshaid, H.; Mishra, R.; Khan, M.Q.; Petru, M.; Tichy, M.; Muller, M. Factors Affecting Acoustic Properties of Natural-Fiber-Based Materials and Composites: A Review. Textiles 2021, 1, 55–85. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Hu, Z.; Zhu, F.; Huang, Y. Correlation between the acoustic and porous cell morphology of polyurethane foam: Effect of interconnected porosity. Mater. Des. 2012, 41, 319–325. [Google Scholar] [CrossRef]
- Soto, G.; Castro, A.; Vechiatti, N.; Iasi, F.; Armas, A.; Marcovich, N.E.; Mosiewicki, M.A. Biobased porous acoustical absorbers made from polyurethane and waste tire particles. Polym. Test. 2017, 57, 42–51. [Google Scholar] [CrossRef]
- Prasetiyo, I.; Muqowi, E.; Putra, A.; Novenbrianty, M.; Desendra, G.; Adhika, D.R. Modelling sound absorption of tunable double layer woven fabrics. Appl. Acoust. 2020, 157, 107008. [Google Scholar] [CrossRef]
- El-Abbassi, F.E.; Assarar, M.; Ayad, R.; Bourmaud, A.; Baley, C. A review on alfa fibre (Stipa tenacissima L.): From the plant architecture to the reinforcement of polymer composites. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105677. [Google Scholar] [CrossRef]
- Walter, N.; Gürsoy, B. A Study on the Sound Absorption Properties of Mycelium-Based Composites Cultivated on Waste Paper-Based Substrates. Biomimetics 2022, 7, 100. [Google Scholar] [CrossRef]
- Pelletier, M.G.; Holt, G.A.; Wanjura, J.D.; Bayer, E.; McIntyre, G. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind. Crops Prod. 2013, 51, 480–485. [Google Scholar] [CrossRef]
Substrate Material | Spent Coffee Grounds | Coffee Chaff | Hay Straw | Hemp Dust | Cereal Mixture |
---|---|---|---|---|---|
Apparent density (g/cm3) | 0.664 | 0.071 | 0.018 | 0.15 | 0.675 |
Code | Lichens | Thickness (mm) | Fungal Species | Experimental Set |
---|---|---|---|---|
SCL25-G. lucidum_1 | Yes | 25 | Ganoderma lucidum | 1 |
SC25-G. lucidum_1 | No | 25 | 1 | |
SC30-G. lucidum_1 | No | 30 | 1 | |
SC25-G. lucidum_1 | No | 25 | 2 | |
SCL25-T. versicolor_1 | Yes | 25 | Trametes versicolor | 1 |
SC25-T. versicolor_1 | No | 25 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barta, D.-G.; Simion, I.; Tiuc, A.-E.; Vasile, O. Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy. Materials 2024, 17, 404. https://doi.org/10.3390/ma17020404
Barta D-G, Simion I, Tiuc A-E, Vasile O. Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy. Materials. 2024; 17(2):404. https://doi.org/10.3390/ma17020404
Chicago/Turabian StyleBarta, Daniel-Gabriel, Irina Simion, Ancuța-Elena Tiuc, and Ovidiu Vasile. 2024. "Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy" Materials 17, no. 2: 404. https://doi.org/10.3390/ma17020404
APA StyleBarta, D. -G., Simion, I., Tiuc, A. -E., & Vasile, O. (2024). Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy. Materials, 17(2), 404. https://doi.org/10.3390/ma17020404