Embrittlement Fracture Behavior and Mechanical Properties in Heat-Affected Zone of Welded Maraging Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Tensile Test and Hardness Procedure
2.3. TIG Welding and Three-Point Bending Test
3. Results and Discussion
3.1. Microstructure
3.2. Tensile Mechanical Properties
3.3. In Situ Observation in HAZ and BM
3.4. Crack Propagation Behavior in HAZ
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kvackaj, T.; Bidulská, J.; Bidulský, R. Overview of HSS Steel Grades Development and Study of Reheating Condition Effects on Austenite Grain Size Changes. Materials 2021, 14, 1988. [Google Scholar] [CrossRef] [PubMed]
- Keeler, S.; Kimchi, M.; Mooney, P.J. Advanced High-Strength Steels Application Guidelines; Version 6.0; WorldAutoSteel: Brussels, Belgium, 2017. [Google Scholar]
- Gutiérrez-Castañeda, E.; Galicia-Ruiz, C.; Hernández-Hernández, L.; Torres-Castillo, A.; Frederik De Lange, D.; Salinas-Rodríguez, A.; Deaquino-Lara, R.; Saldaña-Garcés, R.; Bedolla-Jacuinde, A.; Reyes-Domíniguez, I.; et al. Development of Low-Alloyed Low-Carbon Multiphase Steels under Conditions Similar to Those Used in Continuous Annealing and Galvanizing Lines. Metals 2022, 12, 1818. [Google Scholar] [CrossRef]
- Wang, X.Q.; Tao, Z.; Katwal, U.; Hou, C. Tensile Stress-Strain Models for High Strength Steels. J. Constr. Steel Res. 2021, 186, 106879. [Google Scholar] [CrossRef]
- Jambor, A.; Beyer, M. New Cars—New Materials. Mater. Des. 1997, 18, 203–209. [Google Scholar] [CrossRef]
- Galan, J.; Samek, L.; Verleysen, P.; Verbeken, K.; Houbaert, Y. Advanced High Strength Steels for Automotive Industry. Rev. Metal. 2012, 48, 118–131. [Google Scholar] [CrossRef]
- Wagner, J.A. Mechanical Behavior of 18 Ni 200 Grade Maraging Steel at Cryogenic Temperature. J. Aircr. 1985, 23, 85–96. [Google Scholar]
- Kumar, A.; Balaji, Y.; Prasad, E. Type Certification of 18 Ni Maraging Steels for Landing Gears. Mater. Sci. Forum 2012, 710, 511–515. [Google Scholar] [CrossRef]
- Kucerova, L.; Burdova, K.; Jenian, S.; Chena, I. Effect of Solution Annealing and Precipitation Hardening at 250 °C–500 °C on Microstructure and Mechanical Properties of Additively Manufactured 1.2709 Maraging Steel. Mater. Sci. Eng. A 2021, 814, 141195. [Google Scholar] [CrossRef]
- 18% Nickel Maraging Steel—Engineering Properties, A Practical Guide to the Use of Nickel-Containing Alloys, No. 4419, Inco. Available online: https://nickelinstitute.org/media/8d91ba692f1fdc8/ni_inco_4419_18_nickelmaragingsteel_engineeringproperties.pdf (accessed on 10 January 2024).
- Reis, A.G.; Reis, D.A.P.; Abdalla, A.J.; Couto, A.A.; Otubo, J. Short-Term Creep Properties and Fracture Surface of 18 Ni (300) Maraging Steel Plasma Nitrided. Mater. Res. 2017, 20, 2–9. [Google Scholar] [CrossRef]
- Li, J.; Zhan, D.; Jiang, Z.; Zhang, H.; Yang, Y.; Zhang, Y. Progress on Improving Strength-Toughness of Ultra-High Strength Martensitic Steels for Aerospace Application: A Review. J. Mater. Res. Technol. 2023, 23, 172–190. [Google Scholar] [CrossRef]
- Niu, M.C.; Yin, L.C.; Yang, K.; Luan, J.H.; Wang, W.; Jiao, Z.B. Synergistic Alloying Effects on Nanoscale Precipitation and Mechanical Properties of Ultrahigh-Strength Steels Strengthened by Ni3Ti, Mo-Enriched, and Cr-Rich co-Precipitates. Acta Mater. 2021, 209, 116788. [Google Scholar] [CrossRef]
- Sha, W.; Guo, Z. Maraging Steels: Modelling of Microstructure, Properties and Applications; Elsevier Science: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Decker, R.F. Source Book on Maraging Steels: A Comprehensive Collection of Outstanding Articles from the Periodical and Reference Literature; American Society for Metals: Detroit, MI, USA, 1979. [Google Scholar]
- Ichimiya, R.; Takahashi, A.; Toyohiro, T.; Kobayashi, M.; Miura, H. Embrittlement Behavior and Mechanical Property in Maraging Steel at High Temperature Solution Annealing. In Abstract Book of 1st KRIS 2023; National Institute of Technology (NIT): Tokyo, Japan, 2023. [Google Scholar]
- de Fonseca, D.P.M.; Feitosa, A.L.M.; de Carvalho, L.G.; Plaut, R.L.; Padilha, A.F. A Short Review on Ultra-High Strength Maraging Steels and Future Perspectives. Mater. Res. 2021, 24, e20200470. [Google Scholar] [CrossRef]
- Viswanathan, U.K.; Dey, G.K.; Asundi, M.K. Precipitation Hardening in 350 Grade Maraging Steel. Metall. Trans. A 1993, 24A, 2429–2442. [Google Scholar] [CrossRef]
- Viswanathan, U.K.; Kishore, R.; Asundi, M.K. Effect of Thermal Cycling on the Mechanical Properties of 350-Grade Maraging Steel. Metall. Trans. A 1993, 27A, 757–761. [Google Scholar] [CrossRef]
- Viswanathan, U.K.; Dey, G.K.; Sethumadhavan, V. Effects of Austenite Reversion during Overageing on the Mechanical Properties of 18 Ni (350) Maraging Steel. Mater. Eng. Sci. 2005, A398, 367–372. [Google Scholar] [CrossRef]
- Tewari, R.; Mazumder, S.; Batra, I.S.; Dey, G.K.; Banerjee, S. Precipitation in 18 wt% Ni Maraging Steel of Grade 350. Acta. Mater. 2000, 48, 1187–1200. [Google Scholar] [CrossRef]
- Tavares, S.; Silva, M.R.; Neto, J.M.; Pardal, J.M. Magnetic Properties of a Ni-Co-Mo-Ti Maraging 350 Steel. J. Alloy Comp. 2004, 373, 304–311. [Google Scholar] [CrossRef]
- Vasudevan, V.K.; Kim, S.J.; Wayman, C.M. Precipitation Reactions and Strengthening Behavior in 18 wt Pct Nickel Maraging Steels. Metall. Trans. A 1990, 21A, 2655–2668. [Google Scholar] [CrossRef]
- Vasudevan, V.K.; Kim, S.J.; Wayman, C.M. Maraging Steels: Recent Development and Applications; Wilson, R.K., Ed.; TMS-AIME: Warrendale, PA, USA, 1988; pp. 107–123. [Google Scholar]
- Ei-Fawkhry, M.K.; Eissa, M.; Mattar, A.F. Development of Maraging Steel with Retained Austenite in Martensitic Matrix. Mater. Today Proc. 2015, 25, S711–S714. [Google Scholar] [CrossRef]
- Casalino, G.; Campanelli, S.L.; Contuzzi, N.; Ludovico, A.D. Experimental Investigation and Statistical Optimisation of the Selective Laser Melting Process of a Maraging Steel. Opt. Laser Technol. 2015, 65, 151–158. [Google Scholar] [CrossRef]
- Tan, C.; Zhou, K.; Ma, W.; Zhang, P.; Liu, M.; Kuang, T. Microstructure Evolution, Nanoprecipitation behavior and Mechanical Properties of Selective Laser Melted High-Performance Grade 300 Maraging Steel. Mater. Des. 2017, 134, 23–34. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, Y.; Wang, D.; Zhang, M. Influence Mechanism of Parameters Process and Mechanical Properties Evolution Mechanism of Maraging Steel 300 by Selective Laser Melting. Mater. Sci. Eng. 2017, A703, 116–123. [Google Scholar] [CrossRef]
- Suryawanshi, J.; Prashanth, K.G.; Ramamurty, U. Tensile, Fracture, and Fatigue Crack Growth Properties of a 3D Printed Maraging Steel through Selective Laser Melting. J. Alloys Comp. 2017, 725, 355–364. [Google Scholar] [CrossRef]
- Król, M.; Snopiński, P.; Hajnyš, J.; Pagáč, M.; Łukowiec, D. Selective Laser Melting of 18NI-300 Maraging Steel. Materials 2020, 13, 4268. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.; Seca, R.; Amaral, R.; Emadinia, O.; de Jesus, A.; Reis, A. Tensile Properties of As-Built 18NI300 Maraging Steel Produced by DED. Appl. Sci. 2022, 12, 10829. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, J.; Xu, J.; Yang, D.; Peng, Y. The Effect of Heat Input on the Microstructure and Mechanical Properties of 18Ni 300 Maraging Steel Fabricated by Arc Directed Energy Deposition. Mater. Sci. Eng. 2023, A884, 145545. [Google Scholar] [CrossRef]
- Moshka, O.; Plinkas, M.; Brosh, E.; Ezersky, V.; Meshi, L. Addressing the Issue of Precipitates in Maraging Steels—Unambiguous Answer. Mater. Sci. Eng. 2015, A638, 232–239. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, C.; Yang, Z. Austenite Layer and Precipitation in High Co-Ni Maraging Steel. Micron 2014, 67, 112–116. [Google Scholar] [CrossRef]
- Hu, Z.F.; Wu, X.F. High Resolution Electron Microscopy of Precipitates in High Co-Ni alloy Steel. Micron 2003, 34, 19–23. [Google Scholar]
- Guler, M.; Guler, E.; Kahveci, N. Aspects of Thermal Martensite in a FeNiMoCo Alloy. Micron 2010, 41, 537–539. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, T.C.; Miller, M.K.; Wang, X.L.; Wen, Y.; Fujita, T.; Hirata, A.; Chen, M.; Chen, G.; Chin, B. A Nanoscale Co-Precipitation Approach for Property Enhancement of Fe-Base Alloys. Sci. Rep. 2013, 3, 1327. [Google Scholar] [CrossRef] [PubMed]
- Moszner, S.; Gerstl, S.S.A.; Uggöwitzer, P.J.; Loffler, J.F. Structural and Chemical Characterization of the Hardening Phase in Biodegradation Fe-Mn-Pd Maraging Steels. J. Mater. Res. 2014, 29, 1069–1076. [Google Scholar] [CrossRef]
- Rajkumar, V.; Arivazhagan, N.; Devendranath, R.K. Studied on Welding of Maraging Steels. Procedia Eng. 2014, 75, 83–87. [Google Scholar] [CrossRef]
- Jose, B.; Manoharan, M.; Natarajan, A.; Muktinutalapati, R.N.; Reddy, G.M. Development of a Low Heat-Input Welding Technique for Joining Thick Plates of 250 Grade Maraging Steels to Fabricate Rocket Motor Castings. Mater. Lett. 2023, 326, 132984. [Google Scholar] [CrossRef]
- El-Batahgy, A.M. Influence of Heat Input and Pre-weld Heat Treatment Condition on Properties of Maraging Steel Weldments. Q. J. Jpn. Weld. Soc. 1997, 15, 574–583. [Google Scholar] [CrossRef]
- Mo, D.F.; Hu, Z.F.; Chen, S.J.; Wang, C.X.; He, G.Q. Microstructure and Hardness of T250 Maraging Steel in Heat Affected Zone. J. Iron Steel Res. Inter. 2009, 16, 87–91. [Google Scholar] [CrossRef]
- Welding of Maraging Steels, A Practical Guide to the Use of Nickel-Containing Alloys, No. 584, Inco. Available online: https://nickelinstitute.org/en/library/technical-guides/welding-of-maraging-steels-584/ (accessed on 10 January 2024).
- Pepe, J.J.; Savage, W.F. The Weld Heat-Affected Zone of the 18Ni Maraging Steels. Weld. Res. 1970, 49, 545–553. [Google Scholar]
- Mitteal, M.C.; Ghose, B.R. An Analysis of Fracture Toughness in the HAZ of GTA Welded Maraging Steel. Weld. Res. 1989, 77, 457–461. [Google Scholar]
- Shamantha, C.R.; Narayanan, R.; Iyer, K.J.L.; Radhakrishnan, V.M.; Seshadri, S.K.; Sundararajan, S.; Sundaresan, S. Microstructural Change during Welding and Subsequent Heat Treatment of 18Ni (250-Grade) Maraging Steel. Mater. Sci. Eng. 2000, A287, 43–51. [Google Scholar] [CrossRef]
- Tariq, F.; Baloch, A.B.; Ahmed, B.; Naz, N. Investigation into Microstructures of Maraging Steel 250 Weldments and Effect of Post-Weld Heat Treatments. J. Mater. Eng. Perform. 2010, 19, 264–273. [Google Scholar] [CrossRef]
- Reddy, M.G.; Rao, K.S. Microstructure and Corrosion Behavior of Gas Tungsten Arc Welds of Maraging Steel. Def. Technol. 2018, 11, 48–55. [Google Scholar] [CrossRef]
- Joshi, J.R.; Potta, M.; Adepu, K.; Katta, R.U.; Gankidi, M.R. A Comparative Evaluation of Microstructural and Mechanical Behavior of Fiber Laser Beam and Tungsten Inert Gas Dissimilar Ultra High Strength Steel Welds. Def. Technol. 2016, 12, 464–472. [Google Scholar] [CrossRef]
- Sakai, P.R.; Lima, M.S.F.; Fanton, L.; Gomes, C.V.; Lombardo, S.; Silva, D.F.; Abdalla, A.J. Comparison of Mechanical and Microstructural Characteristics in Maraging 300 Steel Welded by Three Different Processes: LASER, PLASMA and TIG. Prodedia Eng. 2015, 114, 291–297. [Google Scholar] [CrossRef]
- Fanton, L.; Abdalla, A.J.; de Lima, M.S.F. Heat Treatment and Yb-Fiber Laser Welding of a Maraging Steel. Weld. Res. 2014, 93, 362–368. [Google Scholar]
- Li, K.; Shan, J.; Wang, C.; Tian, Z. Effect of Post-Weld Heat Treatments on Strength and Toughness Behavior of T-250 Maraging Steel Welded by Laser Beam. Mater. Sci. Eng. 2016, A663, 157–165. [Google Scholar] [CrossRef]
- Gupra, R.N.; Raja, V.S. Environmentally Assisted Cracking Susceptibility of Dark Etched HAZ/Parent Metal Interfaces Region of 18Ni 250 Maraging Steel Weldment. Mater. Sci. Eng. 2020, A774, 138911. [Google Scholar]
- Ahmed, B.; Tariq, F.; Naz, N.; Baloch, R.A. How Multiple Weld Repairs Impact Maraging Steel. Weld. J. 2012, 91, 38–46. [Google Scholar]
- Rice, J.R. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. J. Appl. Mech. 1968, 35, 379–386. [Google Scholar] [CrossRef]
- Rice, J.R.; Rosengren, G.F. Plane Strain Deformation near a Crack Tip in a Power-Law Hardening material. J. Mech. Phys. Solids 1968, 16, 1–12. [Google Scholar] [CrossRef]
- Hutchinson, J.W. Singular Behaviour at the End of a Tensile Crack in a Hardening Material. J. Mech. Phys. Solids 1968, 16, 13–31. [Google Scholar] [CrossRef]
- Toda, H.; Kobayashi, T.; Takahashi, A. Micromechanism of Fracture in Wrought Aluminum Alloy Containing Coarse Inclusion Particles. Alum. Trans. 1999, 1, 109–116. [Google Scholar]
- Toda, H.; Kobayashi, T.; Takahashi, A. Mechanical Analysis of Toughness Degradation due to Premature Fracture of Course Inclusions in Wrought Aluminium Alloys. Mater. Sci. Eng. 2000, A280, 69–75. [Google Scholar] [CrossRef]
- Toda, H.; Kobayashi, T.; Hoshiyama, A.; Takahashi, A. In-Situ SEM Study on Damege Evolution at Coarse Secondary Particles in 6061 Aluminum Alloy. J. Jpn. Ins. Light Met. 2001, 51, 113–118. (In Japanese) [Google Scholar] [CrossRef]
- Fukumasu, H.; Kobayashi, T.; Toda, H.; Shibue, K. Dynamic Fracture Toughness of a Ti-45Al-1.6Mn Alloy at High Temperature. Metall. Trans. A 2000, 31, 3053–3061. [Google Scholar] [CrossRef]
- Gong, S.X.; Horii, H. General Solution to the Problem of Microcracks near the Tip of a Main Crack. J. Mech. Phys. Solids 1989, 37, 27–46. [Google Scholar] [CrossRef]
- Ouinas, D.; Bouiadjra, B.B.; Benderdouche, N. Interaction Effect of a main Crack Emanating from a Semicircular Notch and a Microcrack. Comp. Mater. Sci. 2008, 43, 1155–1159. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Jiang, X. Influence of a Micro-Crack on the Finite Macro-Crack. Eng. Fract. Mech. 2017, 177, 95–103. [Google Scholar] [CrossRef]
- Saksala, T. Effect of Inherent Microcrack Populations on Rock Tensile Fracture Behaviour: Numerical Study Based on Embedded Discontinuity Finite Elements. Acta Geotech. 2021, 17, 2079–2099. [Google Scholar] [CrossRef]
- Moriyama, M.; Takaki, S.; Kawagoishi, N. Influence of Aging Conditions and Reversion Austenite on Fatigue Property of the 300 Grade 18Ni Maraging Steel. J. Soc. Mat. Sci. 2000, 49, 631–637. (In Japanese) [Google Scholar] [CrossRef]
- Kawabe, Y.; Kanao, M.; Muneki, S. The Effects of Structural Change during Aging and Austenite Grain Size on the Tensile Properties of 18 Ni Maraging Steel. Tetsu-Hagané 1973, 59, 18–29. (In Japanese) [Google Scholar]
- Lima, V.X.; Barros, I.F.; de Abreu, H.F.G. Influence of Solution Annealing on Microstructure and Mechanical Properties of Maraging 300 Steel. Mat. Res. 2017, 20, 10–14. [Google Scholar] [CrossRef]
- Lima, V.X.; Lima, T.N.; Griza, S.; Saravia, B.R.C.; de Abreu, H.F.G. The Increase of Fracture Toughness with Solution Annealing Temperature in 18Ni Maraging 300 Steel. Mater. Res. 2021, 24, e20200472. [Google Scholar] [CrossRef]
- Ayer, R.; Machmeier, P.M. Transmission Electron Microscopy Examination of Hardening and Toughening Phenomena in Aermet 100. Metall. Trans. A 1993, 24A, 1943–1955. [Google Scholar] [CrossRef]
- Yoo, C.H.; Lee, H.M.; Chen, J.W.; Morris, J.W. M2C Precipitates in Isothermal Tempering of High Co–Ni Secondary Hardening Steel. Metall. Trans. A 1996, 27A, 3466–3472. [Google Scholar]
- Wang, L.D.; Liu, L.; Ao, C.X.; Liu, X.J.; Chen, C.L.; Kang, W.M. Investigation of Toughness of Ultrahigh Strength Steel Aermet 100. J. Mater. Sci. Technol. 2000, 16, 491–494. [Google Scholar]
- Rice, J.R.; Johnson, M.A. Inelastic Behavior of Solids; Kanninen, M.F., Adler, W.F., Rosenfield, A.R., Jaffee, R.I., Eds.; McGraw Hill: New York City, NY, USA, 1970; pp. 641–672. [Google Scholar]
- Osgood, W.R.; Ramberg, W. Description of Stress-Strain Curves by Three Parameters. National Advisory Committee for Aeronautics Technical Note No.902. 1943. Available online: https://www.apesolutions.com/spd/public/NACA-TN902.pdf (accessed on 10 January 2024).
- Anderson, T.L. Fracture Mechanics, Fundamentals and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Rice, J.R.; Drugan, W.J.; Sham, T.L. Fracture Mechanics. In Proceedings of the Twelfth Symposium on Fracture Mechanics, St Louis, MO, USA, 21 May 1979; ASTM STP 700. American Society for Testing and Materials: Philadelphia, PA, USA, 1980; pp. 189–219. [Google Scholar]
- Chen, K.S. Crack-Tip Behaviors of Stationary and Growing Cracks in Al-Fe-X Alloys: Part I. Near-Tip Strain Field. Metall. Trans. A 1990, 21, 69–80. [Google Scholar] [CrossRef]
- Chen, K.S. Crack-Tip Behaviors of Stationary and Growing Cracks in Al-Fe-X Alloys: Part II. Crack Opening Profiles. Metall. Trans. A 1990, 21, 81–86. [Google Scholar] [CrossRef]
- Toda, H.; Kobayashi, T.; Takahashi Hoshiyama, A. Numerical Simulation of Fracture Induced by Damage of Intermetallic Particles in Wrought Aluminum Alloy. J. Jpn. Int. Met. 2001, 65, 29–37. (In Japanese) [Google Scholar] [CrossRef]
- Toda, H.; Kobayashi, T.; Wada, Y. Fracture Mechanical Simulations of a Crack Propagating in Discontinuously-Reinforced Metal Matrix Composites. J. Jpn. Uns. Met. 1995, 59, 94–102. (In Japanese) [Google Scholar]
- Kobayashi, T.; Toda, H. Fracture in Complex Microstructures. Mater. Trans. 2001, 42, 90–99. [Google Scholar] [CrossRef]
Element | C | Ni | Mo | Co | Ti | Al | Si | Mn | Fe |
---|---|---|---|---|---|---|---|---|---|
Bar | 0.003 | 18.44 | 4.89 | 9.02 | 0.92 | 0.11 | 0.01 | 0.01 | Bal. |
Filler | 0.002 | 18.16 | 4.80 | 8.54 | 0.62 | 0.12 | 0.04 | 0.05 | Bal. |
Solution Annealing (+753 K for 48 ks) | 0.2% Proof Stress, σ0.2, MPa | Ultimate Tensile Strength, σu, MPa | Elastic Modulus, E, GPa (Strain Gauge) | Fracture Strain, εf | Reduction of Area, φ, % |
---|---|---|---|---|---|
1123 K for 5.4 ks | 2113 | 2159 | 195 | 0.079 | 49.8 |
1373 K for 3.6 ks | 2003 | 2103 | 195 | 0.040 | 13.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, A.; Toyohiro, T.; Segawa, Y.; Kobayashi, M.; Miura, H. Embrittlement Fracture Behavior and Mechanical Properties in Heat-Affected Zone of Welded Maraging Steel. Materials 2024, 17, 440. https://doi.org/10.3390/ma17020440
Takahashi A, Toyohiro T, Segawa Y, Kobayashi M, Miura H. Embrittlement Fracture Behavior and Mechanical Properties in Heat-Affected Zone of Welded Maraging Steel. Materials. 2024; 17(2):440. https://doi.org/10.3390/ma17020440
Chicago/Turabian StyleTakahashi, Akihiro, Toshinobu Toyohiro, Yuji Segawa, Masakazu Kobayashi, and Hiromi Miura. 2024. "Embrittlement Fracture Behavior and Mechanical Properties in Heat-Affected Zone of Welded Maraging Steel" Materials 17, no. 2: 440. https://doi.org/10.3390/ma17020440
APA StyleTakahashi, A., Toyohiro, T., Segawa, Y., Kobayashi, M., & Miura, H. (2024). Embrittlement Fracture Behavior and Mechanical Properties in Heat-Affected Zone of Welded Maraging Steel. Materials, 17(2), 440. https://doi.org/10.3390/ma17020440