Nanostructuring of Additively Manufactured 316L Stainless Steel Using High-Pressure Torsion Technique: An X-ray Line Profile Analysis Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. AM Processing and Subsequent Annealing of 316L Steel Samples
2.2. HPT Processing of the 3D-Printed 316L Steel Samples
2.3. Phase and Texture Analysis via X-ray Diffraction
2.4. Characterization of the Microstructure via XLPA
2.5. Hardness Testing
3. Results
3.1. Microstructure and Crystallographic Texture of the AM-Processed and Annealed Samples
3.2. Effet of HPT on the Microstructure and Texture of the AM-Processed and Annealed Specimens
3.3. Influence of HPT on the Hardness of the AM-Processed and Annealed Samples
4. Discussion
5. Conclusions
- Before HPT, the as-built 316L material contained a high dislocation density of about 1015 m−2 which is at least two orders of magnitude greater than in an as-cast counterpart. These dislocations in the AM-processed sample are most probably grown-in defects that formed in order to reduce the mismatch stresses between the neighboring grains. Annealing the as-built material at 400 °C did not yield a significant decrease in the dislocation density. However, at 800 and 1100 °C, the dislocation density was reduced to half of the value determined before the heat treatment. Accordingly, the hardness decreased due to annealing at 800 and 1100 °C.
- HPT resulted in a decrease in the crystallite size from a value higher than 500 nm to about 20 nm at the shear strain of ~18 or higher. Simultaneously, the dislocation density and the twin fault probability increased and reached saturation values of about 3 × 1016 m−2 and 3%, respectively, at the same shear strain. Due to the reduction in the crystallite size and increase in the defect density, the hardness increased and became saturated with a value of about 6000 MPa. Annealing after AM processing had no considerable effect on the evolution of the microstructure and hardness during HPT. The <100> and <110> crystallographic texture of the as-built and heat-treated samples changed to a <111> preferred orientation during HPT.
- The AM-processed 316L samples, either before or after annealing, have a higher hardness (2000–3000 MPa) than the as-cast counterpart (1300 MPa) due to the high density of grown-in dislocations. During HPT, the as-cast sample exhibited martensitic phase transformation from fcc to bcc, which was not observed for the 3D-printed samples, due to the stabilization effect of the higher Ni content. On the other hand, the saturation hardness after HPT was similar for the as-cast and AM-processed 316L steel materials, since the hardening effect of the bcc phase in the former sample was compensated with the higher density of lattice defects in the fcc phase of the latter specimen.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. Int. Sch. Res. Not. 2012, 2012, e208760. [Google Scholar] [CrossRef]
- Prakash, K.S.; Nancharaih, T.; Rao, V.V.S. Additive Manufacturing Techniques in Manufacturing—An Overview. Mater. Today Proc. 2018, 5, 3873–3882. [Google Scholar] [CrossRef]
- Jemghili, R.; Ait Taleb, A.; Khalifa, M. A Bibliometric Indicators Analysis of Additive Manufacturing Research Trends from 2010 to 2020. Rapid Prototyp. J. 2021, 27, 1432–1454. [Google Scholar] [CrossRef]
- Angrish, A. A Critical Analysis of Additive Manufacturing Technologies for Aerospace Applications. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014; pp. 1–6. [Google Scholar]
- Careri, F.; Khan, R.H.U.; Todd, C.; Attallah, M.M. Additive Manufacturing of Heat Exchangers in Aerospace Applications: A Review. Appl. Therm. Eng. 2023, 235, 121387. [Google Scholar] [CrossRef]
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; du Plessis, A. Metal Additive Manufacturing in Aerospace: A Review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, L.; Jiang, W.; Wu, W.; Ai, S.; Shen, L.; Zhao, S.; Dai, K. 3D Printing Hip Prostheses Offer Accurate Reconstruction, Stable Fixation, and Functional Recovery for Revision Total Hip Arthroplasty with Complex Acetabular Bone Defect. Engineering 2020, 6, 1285–1290. [Google Scholar] [CrossRef]
- Salmi, M. Additive Manufacturing Processes in Medical Applications. Materials 2021, 14, 191. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Current Status and Applications of Additive Manufacturing in Dentistry: A Literature-Based Review. J. Oral Biol. Craniofacial Res. 2019, 9, 179–185. [Google Scholar] [CrossRef]
- Priarone, P.C.; Catalano, A.R.; Settineri, L. Additive Manufacturing for the Automotive Industry: On the Life-Cycle Environmental Implications of Material Substitution and Lightweighting through Re-Design. Prog. Addit Manuf. 2023, 8, 1229–1240. [Google Scholar] [CrossRef]
- Alami, A.H.; Ghani Olabi, A.; Alashkar, A.; Alasad, S.; Aljaghoub, H.; Rezk, H.; Abdelkareem, M.A. Additive Manufacturing in the Aerospace and Automotive Industries: Recent Trends and Role in Achieving Sustainable Development Goals. Ain Shams Eng. J. 2023, 14, 102516. [Google Scholar] [CrossRef]
- Ford, S.; Despeisse, M. Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Olivas-Alanis, L.H.; Fraga-Martínez, A.A.; García-López, E.; Lopez-Botello, O.; Vazquez-Lepe, E.; Cuan-Urquizo, E.; Rodriguez, C.A. Mechanical Properties of AISI 316L Lattice Structures via Laser Powder Bed Fusion as a Function of Unit Cell Features. Materials 2023, 16, 1025. [Google Scholar] [CrossRef] [PubMed]
- Attaran, M. The Rise of 3-D Printing: The Advantages of Additive Manufacturing over Traditional Manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Berman, B. 3-D Printing: The New Industrial Revolution. Bus. Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Pérez, M.; Carou, D.; Rubio, E.M.; Teti, R. Current Advances in Additive Manufacturing. Procedia CIRP 2020, 88, 439–444. [Google Scholar] [CrossRef]
- Pereira, T.; Kennedy, J.V.; Potgieter, J. A Comparison of Traditional Manufacturing vs Additive Manufacturing, the Best Method for the Job. Procedia Manuf. 2019, 30, 11–18. [Google Scholar] [CrossRef]
- Walter, A.; Marcham, C. Environmental Advantages in Additive Manufacturing. Prof. Saf./ASSP 2020, 65, 34–38. [Google Scholar]
- Alogla, A.A.; Baumers, M.; Tuck, C.; Elmadih, W. The Impact of Additive Manufacturing on the Flexibility of a Manufacturing Supply Chain. Appl. Sci. 2021, 11, 3707. [Google Scholar] [CrossRef]
- Delic, M.; Eyers, D.R. The Effect of Additive Manufacturing Adoption on Supply Chain Flexibility and Performance: An Empirical Analysis from the Automotive Industry. Int. J. Prod. Econ. 2020, 228, 107689. [Google Scholar] [CrossRef]
- Bourell, D.; Kruth, J.P.; Leu, M.; Levy, G.; Rosen, D.; Beese, A.M.; Clare, A. Materials for Additive Manufacturing. CIRP Ann. 2017, 66, 659–681. [Google Scholar] [CrossRef]
- Agarwal, R.; Sharma, S.; Gupta, V.; Singh, J.; Khas, K.S. Additive Manufacturing: Materials, Technologies, and Applications. In Additive Manufacturing; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-325839-1. [Google Scholar]
- ISO/ASTM 52900; Standard Terminology for Additive Manufacturing–General Principles—Terminology. International Organization for Standardization: Geneva, Switzerland, 2021.
- Leary, M. Chapter 11—Powder Bed Fusion. In Design for Additive Manufacturing; Leary, M., Ed.; Additive Manufacturing Materials and Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 295–319. ISBN 978-0-12-816721-2. [Google Scholar]
- Velu, R.; Jayashankar, D.K.; Subburaj, K. Chapter 20—Additive Processing of Biopolymers for Medical Applications. In Additive Manufacturing; Pou, J., Riveiro, A., Davim, J.P., Eds.; Handbooks in Advanced Manufacturing; Elsevier: Amsterdam, The Netherlands, 2021; pp. 635–659. ISBN 978-0-12-818411-0. [Google Scholar]
- Zhang, Y.; Jarosinski, W.; Jung, Y.-G.; Zhang, J. 2—Additive Manufacturing Processes and Equipment. In Additive Manufacturing; Zhang, J., Jung, Y.-G., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 39–51. ISBN 978-0-12-812155-9. [Google Scholar]
- Gibson, I.; Rosen, D.; Stucker, B. Directed Energy Deposition Processes. In Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Gibson, I., Rosen, D., Stucker, B., Eds.; Springer: New York, NY, USA, 2015; pp. 245–268. ISBN 978-1-4939-2113-3. [Google Scholar]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; Humbeeck, J.V.; Kruth, J.-P. A Study of the Microstructural Evolution during Selective Laser Melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Raza, T.; Andersson, J.; Svensson, L.-E. Microstructure of Selective Laser Melted Alloy 718 in As-Manufactured and Post Heat Treated Condition. Procedia Manuf. 2018, 25, 450–458. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, D.; Wang, P.; Yan, M.; Yang, C.; Chen, Z.; Lu, J.; Lu, Z. Additive Manufacturing of Metals: Microstructure Evolution and Multistage Control. J. Mater. Sci. Technol. 2022, 100, 224–236. [Google Scholar] [CrossRef]
- Oliveira, J.P.; LaLonde, A.D.; Ma, J. Processing Parameters in Laser Powder Bed Fusion Metal Additive Manufacturing. Mater. Des. 2020, 193, 108762. [Google Scholar] [CrossRef]
- Suwas, S.; Vikram, R.J. Texture Evolution in Metallic Materials During Additive Manufacturing: A Review. Trans. Indian Natl. Acad. Eng. 2021, 6, 991–1003. [Google Scholar] [CrossRef]
- Leicht, A.; Klement, U.; Hryha, E. Effect of Build Geometry on the Microstructural Development of 316L Parts Produced by Additive Manufacturing. Mater. Charact. 2018, 143, 137–143. [Google Scholar] [CrossRef]
- Gorsse, S.; Hutchinson, C.; Gouné, M.; Banerjee, R. Additive Manufacturing of Metals: A Brief Review of the Characteristic Microstructures and Properties of Steels, Ti-6Al-4V and High-Entropy Alloys. Sci. Technol. Adv. Mater. 2017, 18, 584–610. [Google Scholar] [CrossRef]
- Seifi, M.; Salem, A.; Beuth, J.; Harrysson, O.; Lewandowski, J.J. Overview of Materials Qualification Needs for Metal Additive Manufacturing. JOM 2016, 68, 747–764. [Google Scholar] [CrossRef]
- Karakurt, I.; Lin, L. 3D Printing Technologies: Techniques, Materials, and Post-Processing. Curr. Opin. Chem. Eng. 2020, 28, 134–143. [Google Scholar] [CrossRef]
- Tascioglu, E.; Karabulut, Y.; Kaynak, Y. Influence of Heat Treatment Temperature on the Microstructural, Mechanical, and Wear Behavior of 316L Stainless Steel Fabricated by Laser Powder Bed Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2020, 107, 1947–1956. [Google Scholar] [CrossRef]
- Wang, W.Y.; Godfrey, A.; Liu, W. Effect of Heat Treatment on Microstructural Evolution in Additively Manufactured 316L Stainless Steel. Metals 2023, 13, 1062. [Google Scholar] [CrossRef]
- Cain, V.; Thijs, L.; Van Humbeeck, J.; Van Hooreweder, B.; Knutsen, R. Crack Propagation and Fracture Toughness of Ti6Al4V Alloy Produced by Selective Laser Melting. Addit. Manuf. 2015, 5, 68–76. [Google Scholar] [CrossRef]
- Li, Y.; Chiate, L.; Liang, Y.; Chen, X.; Yang, Z.; Chen, Y. The Long-Term Corrosion Behaviors of SLM 316L Stainless Steel Immersed in Artificial Saliva. Mater. Sci. 2021, 28. [Google Scholar] [CrossRef]
- Kerner, Z.; Horváth, Á.; Nagy, G. Comparative Electrochemical Study of 08H18N10T, AISI 304 and AISI 316L Stainless Steels. Electrochim. Acta 2007, 52, 7529–7537. [Google Scholar] [CrossRef]
- Odnobokova, M.; Torganchuk, V.; Tikhonova, M.; Dolzhenko, P.; Kaibyshev, R.; Belyakov, A. On the Strength of a 316L-Type Austenitic Stainless Steel Produced by Selective Laser Melting. Metals 2023, 13, 1423. [Google Scholar] [CrossRef]
- Andersen, P.J. 1.3.3B—Stainless Steels. In Biomaterials Science, 4th ed.; Wagner, W.R., Sakiyama-Elbert, S.E., Zhang, G., Yaszemski, M.J., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 249–255. ISBN 978-0-12-816137-1. [Google Scholar]
- da Silva, R.P.P.; Mortean, M.V.V.; de Paiva, K.V.; Beckedorff, L.E.; Oliveira, J.L.G.; Brandão, F.G.; Monteiro, A.S.; Carvalho, C.S.; Oliveira, H.R.; Borges, D.G.; et al. Thermal and Hydrodynamic Analysis of a Compact Heat Exchanger Produced by Additive Manufacturing. Appl. Therm. Eng. 2021, 193, 116973. [Google Scholar] [CrossRef]
- Lodhi, M.J.K.; Deen, K.M.; Greenlee-Wacker, M.C.; Haider, W. Additively Manufactured 316L Stainless Steel with Improved Corrosion Resistance and Biological Response for Biomedical Applications. Addit. Manuf. 2019, 27, 8–19. [Google Scholar] [CrossRef]
- Sing, S.L.; Tey, C.F.; Tan, J.H.K.; Huang, S.; Yeong, W.Y. 2—3D Printing of Metals in Rapid Prototyping of Biomaterials: Techniques in Additive Manufacturing. In Rapid Prototyping of Biomaterials, 2nd ed.; Narayan, R., Ed.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2020; pp. 17–40. ISBN 978-0-08-102663-2. [Google Scholar]
- Silva, C.C.; Farias, J.P.; de Sant’Ana, H.B. Evaluation of AISI 316L Stainless Steel Welded Plates in Heavy Petroleum Environment. Mater. Des. 2009, 30, 1581–1587. [Google Scholar] [CrossRef]
- Adzali, N.M.S.; Azhar, N.A.; Daud, Z.C.; Zaidi, N.H.A.; Adnan, S.A. Heat Treatment of SS 316L for Automotive Applications. Mater. Sci. Forum 2020, 1010, 28–33. [Google Scholar] [CrossRef]
- D’Andrea, D. Additive Manufacturing of AISI 316L Stainless Steel: A Review. Metals 2023, 13, 1370. [Google Scholar] [CrossRef]
- Bartolomeu, F.; Buciumeanu, M.; Pinto, E.; Alves, N.; Carvalho, O.; Silva, F.S.; Miranda, G. 316L Stainless Steel Mechanical and Tribological Behavior—A Comparison between Selective Laser Melting, Hot Pressing and Conventional Casting. Addit. Manuf. 2017, 16, 81–89. [Google Scholar] [CrossRef]
- Muratal, O.; Yamanoglu, R. Production of 316L Stainless Steel Used in Biomedical Applications by Powder Metallurgy. In Proceedings of the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 24–26 April 2019; pp. 1–4. [Google Scholar]
- Rajput, S.K.; Kumar, J.; Mehta, Y.; Soota, T.; Saxena, K.K. Microstructural Evolution and Mechanical Properties of 316L Stainless Steel Using Multiaxial Forging. Adv. Mater. Process. Technol. 2020, 6, 509–518. [Google Scholar] [CrossRef]
- Baharuddin, M.Y.; Salleh, S.-H.; Suhasril, A.A.; Zulkifly, A.H.; Lee, M.H.; Omar, M.A.; Abd Kader, A.S.; Mohd Noor, A.; Harris, A.R.A.; Abdul Majid, N. Fabrication of Low-Cost, Cementless Femoral Stem 316L Stainless Steel Using Investment Casting Technique. Artif. Organs 2014, 38, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Philip, A.M.; Chakraborty, K. Some Studies on the Machining Behaviour of 316L Austenitic Stainless Steel. Mater. Today Proc. 2022, 56, 681–685. [Google Scholar] [CrossRef]
- Li, Y.; Ma, C.; Qin, F.; Chen, H.; Zhao, X.; Liu, R.; Gao, S. The Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel Prepared by Forge and Laser Melting Deposition. Mater. Sci. Eng. A 2023, 870, 144820. [Google Scholar] [CrossRef]
- Hao, L.; Wang, W.; Zeng, J.; Song, M.; Chang, S.; Zhu, C. Effect of Scanning Speed and Laser Power on Formability, Microstructure, and Quality of 316L Stainless Steel Prepared by Selective Laser Melting. J. Mater. Res. Technol. 2023, 25, 3189–3199. [Google Scholar] [CrossRef]
- Pacheco, J.T.; Meura, V.H.; Bloemer, P.R.A.; Veiga, M.T.; de Moura Filho, O.C.; Cunha, A.; Teixeira, M.F. Laser Directed Energy Deposition of AISI 316L Stainless Steel: The Effect of Build Direction on Mechanical Properties in as-Built and Heat-Treated Conditions. Adv. Ind. Manuf. Eng. 2022, 4, 100079. [Google Scholar] [CrossRef]
- Mao, Y.; Li, J.; Li, W.; Cai, D.; Wei, Q. Binder Jetting Additive Manufacturing of 316L Stainless-Steel Green Parts with High Strength and Low Binder Content: Binder Preparation and Process Optimization. J. Mater. Process. Technol. 2021, 291, 117020. [Google Scholar] [CrossRef]
- Röttger, A.; Boes, J.; Theisen, W.; Thiele, M.; Esen, C.; Edelmann, A.; Hellmann, R. Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel Processed by Different SLM Devices. Int. J. Adv. Manuf. Technol. 2020, 108, 769–783. [Google Scholar] [CrossRef]
- Nastac, M.; Klein, R.L.A. Microstructure and Mechanical Properties Comparison of 316L Parts Produced by Different Additive Manufacturing Processes. In Proceedings of the Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 7–9 August 2017; pp. 332–341. [Google Scholar]
- Aversa, A.; Marchese, G.; Bassini, E. Directed Energy Deposition of AISI 316L Stainless Steel Powder: Effect of Process Parameters. Metals 2021, 11, 932. [Google Scholar] [CrossRef]
- Leicht, A. Laser Powder Bed Fusion of 316L Stainless Steel—Microstructure and Mechanical Properties as a Function of Process Parameters, Design and Productivity. Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2020. [Google Scholar]
- Kuzminova, Y.O.; Firsov, D.G.; Konev, S.D.; Dudin, A.A.; Dagesyan, S.A.; Akhatov, I.S.; Evlashin, S.A. Structure Control of 316L Stainless Steel through an Additive Manufacturing. Lett. Mater. 2019, 9, 551–555. [Google Scholar] [CrossRef]
- Filimonov, A.M.; Rogozin, O.A.; Firsov, D.G.; Kuzminova, Y.O.; Sergeev, S.N.; Zhilyaev, A.P.; Lerner, M.I.; Toropkov, N.E.; Simonov, A.P.; Binkov, I.I.; et al. Hardening of Additive Manufactured 316L Stainless Steel by Using Bimodal Powder Containing Nanoscale Fraction. Materials 2021, 14, 115. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, M.; Han, J.-K.; Liu, X.; Onuki, Y.; Kuzminova, Y.O.; Evlashin, S.A.; Pesin, A.M.; Zhilyaev, A.P.; Liss, K.-D. In Situ Heating Neutron and X-Ray Diffraction Analyses for Revealing Structural Evolution during Postprinting Treatments of Additive-Manufactured 316L Stainless Steel. Adv. Eng. Mater. 2022, 24, 2100968. [Google Scholar] [CrossRef]
- Ribárik, G.; Gubicza, J.; Ungár, T. Correlation between Strength and Microstructure of Ball-Milled Al–Mg Alloys Determined by X-Ray Diffraction. Mater. Sci. Eng. A 2004, 387–389, 343–347. [Google Scholar] [CrossRef]
- Gubicza, J. X-Ray Line Profile Analysis in Materials Science; IGI Global: Hershey, PA, USA, 2014; ISBN 978-1-4666-5852-3. [Google Scholar]
- Gubicza, J.; Kawasaki, M.; Dankházi, Z.; Windisch, M.; El-Tahawy, M. X-Ray Line Profile Analysis Study on the Evolution of the Microstructure in Additively Manufactured 316L Steel during Severe Plastic Deformation. J. Mater. Sci. 2023. [Google Scholar] [CrossRef]
- Li, T.L.; Gao, Y.F.; Bei, H.; George, E.P. Indentation Schmid Factor and Orientation Dependence of Nanoindentation Pop-in Behavior of NiAl Single Crystals. J. Mech. Phys. Solids 2011, 59, 1147–1162. [Google Scholar] [CrossRef]
- Gubicza, J.; El-Tahawy, M.; Huang, Y.; Choi, H.; Choe, H.; Lábár, J.L.; Langdon, T.G. Microstructure, Phase Composition and Hardness Evolution in 316L Stainless Steel Processed by High-Pressure Torsion. Mater. Sci. Eng. A 2016, 657, 215–223. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gubicza, J.; Mukhtarova, K.; Kawasaki, M. Nanostructuring of Additively Manufactured 316L Stainless Steel Using High-Pressure Torsion Technique: An X-ray Line Profile Analysis Study. Materials 2024, 17, 454. https://doi.org/10.3390/ma17020454
Gubicza J, Mukhtarova K, Kawasaki M. Nanostructuring of Additively Manufactured 316L Stainless Steel Using High-Pressure Torsion Technique: An X-ray Line Profile Analysis Study. Materials. 2024; 17(2):454. https://doi.org/10.3390/ma17020454
Chicago/Turabian StyleGubicza, Jenő, Kamilla Mukhtarova, and Megumi Kawasaki. 2024. "Nanostructuring of Additively Manufactured 316L Stainless Steel Using High-Pressure Torsion Technique: An X-ray Line Profile Analysis Study" Materials 17, no. 2: 454. https://doi.org/10.3390/ma17020454
APA StyleGubicza, J., Mukhtarova, K., & Kawasaki, M. (2024). Nanostructuring of Additively Manufactured 316L Stainless Steel Using High-Pressure Torsion Technique: An X-ray Line Profile Analysis Study. Materials, 17(2), 454. https://doi.org/10.3390/ma17020454