Comparative Study of Corrosion Performance of LVOF-Sprayed Ni-Based Composite Coatings Produced Using Standard and Reducing Flame Spray Stoichiometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Preparation
2.2. Coating Characterization
2.3. Potentiodynamic Polarization Procedure
2.4. Electrochemical Impedance Spectroscopy (EIS) Procedure
3. Results and Discussion
3.1. Microstructure Characterization
3.2. Corrosion Behavior of As-Sprayed Coatings
3.3. Electrochemical Impedance Spectroscopy (EIS) Behavior
3.4. The Corrosion Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dobrzański, L.; Lukaszkowicz, K.; Zarychta, A.; Cunha, L. Corrosion resistance of multilayer coatings deposited by PVD techniques onto the brass substrate. J. Mater. Process. Technol. 2005, 164–165, 816–821. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, Y.; Chu, Z.; Yang, Y.; Li, Y.; Yan, D. Corrosion behavior of plasma sprayed ceramic and metallic coatings on carbon steel in simulated seawater. Mater. Des. 2013, 52, 630–637. [Google Scholar] [CrossRef]
- Kazamer, N.; Muntean, R.; Vălean, P.C.; Pascal, D.T.; Mărginean, G.; Șerban, V.-A. Comparison of Ni-Based Self-Fluxing Remelted Coatings for Wear and Corrosion Applications. Materials 2021, 14, 3293. [Google Scholar] [CrossRef] [PubMed]
- Idir, A.; Delloro, F.; Younes, R.; Bradai, M.A.; Sadeddine, A.; Benabbas, A. Tribological performance of thermally sprayed NiWCrBSi alloy coating by two different oxyacetylene flame stoichiometries. Trans. IMF 2021, 99, 313–323. [Google Scholar] [CrossRef]
- Sang, P.; Chen, L.-Y.; Zhao, C.; Wang, Z.-X.; Wang, H.; Lu, S.; Song, D.; Xu, J.-H.; Zhang, L.-C. Particle Size-Dependent Microstructure, Hardness and Electrochemical Corrosion Behavior of Atmospheric Plasma Sprayed NiCrBSi Coatings. Metals 2019, 9, 1342. [Google Scholar] [CrossRef]
- Dongmo, E.; Gadow, R.; Killinger, A.; Wenzelburger, M. Modeling of Combustion as well as Heat, Mass, and Momentum Transfer During Thermal Spraying by HVOF and HVSFS. J. Therm. Spray Technol. 2009, 18, 896–908. [Google Scholar] [CrossRef]
- Mittal, G.; Paul, S. Suspension and Solution Precursor Plasma and HVOF Spray: A Review. J. Therm. Spray Technol. 2022, 31, 1443–1475. [Google Scholar] [CrossRef]
- Joshi, S.; Nylen, P. Advanced Coatings by Thermal Spray Processes. Technologies 2019, 7, 79. [Google Scholar] [CrossRef]
- Torkashvand, K.; Selpol, V.K.; Gupta, M.; Joshi, S. Influence of test conditions on sliding wear performance of high velocity air fuel-sprayed WC–CoCr coatings. Materials 2021, 14, 3074. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, C.; Song, J.; Deng, C.; Liu, M.; Dai, M. Electrochemical Corrosive Behaviors of Fe-Based Amorphous/Nanocrystalline Coating on Stainless Steel Prepared by HVOF-Sprayed. Coatings 2019, 9, 226. [Google Scholar] [CrossRef]
- Valíček, J.; Harničárová, M.; Řehoř, J.; Kušnerová, M.; Kučerová, L.; Gombár, M.; Fulemová, J.; Filipenský, J.; Hnátík, J. Thermodynamics and Mechanics of Thermal Spraying of Steel EN 10060 Substrate with NiCrBSi Alloy after Milling. Materials 2020, 13, 5344. [Google Scholar] [CrossRef] [PubMed]
- Niranatlumpong, P.; Koiprasert, H. Phase transformation of NiCrBSi–WC and NiBSi–WC arc sprayed coatings. Surf. Coatings Technol. 2011, 206, 440–445. [Google Scholar] [CrossRef]
- Sheppard, P.; Koiprasert, H. Effect of W dissolution in NiCrBSi–WC and NiBSi–WC arc sprayed coatings on wear behaviors. Wear 2014, 317, 194–200. [Google Scholar] [CrossRef]
- Bergant, Z.; Trdan, U.; Grum, J. Effect of high-temperature furnace treatment on the microstructure and corrosion behavior of NiCrBSi flame-sprayed coatings. Corros. Sci. 2014, 88, 372–386. [Google Scholar] [CrossRef]
- Idir, A.; Delloro, F.; Younes, R.; Bradai, M.A.; Sadeddine, A.; Benabbas, A. Microstructure analysis and mechanical characterisation of NiWCrBSi coatings produced by flame spraying. Metall. Res. Technol. 2022, 119, 403. [Google Scholar] [CrossRef]
- Garrido, M.A.; Rico, A.; Gómez, M.T.; Cadenas, M.; Fernández-Rico, J.E.; Rodríguez, J. Tribological and oxidative behavior of thermally sprayed NiCrBSi coatings. J. Therm. Spray Technol. 2017, 26, 517–529. [Google Scholar] [CrossRef]
- Idir, A.; Delloro, F.; Younes, R.; Bradai, M.A.; Sadeddine, A.; Benabbas, A. Microstructure and Tribological Behaviour of NiWCrBSi Coating Produced by Flame Spraying. Phys. Met. Metallogr. 2022, 123, 1410–1418. [Google Scholar] [CrossRef]
- Hulka, I.; Uțu, I.D.; Avram, D.; Dan, M.L.; Pascu, A.; Stanciu, E.M.; Roată, I.C. Influence of the laser cladding parameters on the morphology, wear and corrosion resistance of WC-Co/NiCrBSi composite coatings. Materials 2021, 14, 5583. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, J.; Deng, X.; Dong, Y.; Yang, Y.; Li, D. Comparison of microstructure and properties of in-situ TiN-and WC-reinforced NiCrBSi composite coatings prepared by plasma spraying. Materials 2018, 1, 2182. [Google Scholar] [CrossRef]
- Bergant, Z.; Batic, B.; Felde, I.; Šturm, R.; Sedlacek, M. Tribological properties of solid solution strengthened laser cladded NiCrBSi/WC-12Co metal matrix composite coatings. Materials 2022, 15, 342. [Google Scholar] [CrossRef]
- Deschuyteneer, D.; Petit, F.; Gonon, M.; Cambier, F. Influence of large particle size–up to 1.2 mm–and morphology on wear resistance in NiCrBSi/WC laser cladded composite coatings. Surf. Coat. Technol. 2017, 311, 365–373. [Google Scholar] [CrossRef]
- Hulka, I.; Utu, D.; Serban, V.A.; Negrea, P.; Lukáč, F.; Chráska, T. Effect of Ti addition on microstructure and corrosion properties of laser cladded WC-Co/NiCrBSi (Ti) coatings. Appl. Surf. Sci. 2020, 504, 144349. [Google Scholar] [CrossRef]
- Kazamer, N.; Vălean, P.; Pascal, D.T.; Muntean, R.; Mărginean, G.; Șerban, V.A. Development, optimization, and characterization of NiCrBSi-TiB2 flame-sprayed vacuum fused coatings. Surf. Coat. Technol. 2021, 406, 126747. [Google Scholar] [CrossRef]
- Dilawary, S.A.A.; Motallebzadeh, A.; Atar, E.; Cimenoglu, H. Influence of Mo on the high temperature wear performance of NiCrBSihardfacings. Tribol. Int. 2018, 127, 288–295. [Google Scholar] [CrossRef]
- Yu, T.; Chen, J.; Wen, Y.; Deng, Q. High temperature phase stability and wear behavior of laser clad Ta reinforced NiCrBSi coating. Appl. Surf. Sci. 2021, 547, 149171. [Google Scholar] [CrossRef]
- Czupryński, A.; Adamiec, J.; Adamiak, M.; Żuk, M.; Kříž, A.; Mele, C.; Kciuk, M. High-Temperature Corrosion of Flame-Sprayed Power Boiler Components with Nickel Alloy Powders. Materials 2023, 16, 1658. [Google Scholar] [CrossRef] [PubMed]
- Navas, C.; Vijande, R.; Cuetos, J.M.; Fernández, M.R.; De Damborenea, J. Corrosion behaviour of NiCrBSi plasma-sprayed coatings partially melted with laser. Surf. Coat. Technol. 2006, 201, 776–785. [Google Scholar] [CrossRef]
- Li, D.G.; Wang, J.D.; Chen, D.R.; Liang, P. Molybdenum addition enhancing the corrosion behaviors of 316 L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2015, 40, 5947–5957. [Google Scholar] [CrossRef]
- Lee, C.H.; Min, K.O. Effects of heat treatment on the microstructure and properties of HVOF-sprayed Ni–Cr–W–Mo–B alloy coatings. Surf. Coat. Technol. 2000, 132, 49–57. [Google Scholar] [CrossRef]
- Souza, V.A.D.; Neville, A. Linking electrochemical corrosion behaviour and corrosion mechanisms of thermal spray cermet coatings (WC–CrNi and WC/CrC–CoCr). Mater. Sci. Eng. A 2003, 352, 202–211. [Google Scholar] [CrossRef]
- Gil, L.; Staia, M.H. Influence of HVOF parameters on the corrosion resistance of NiWCrBSi coatings. Thin Solid Films 2002, 420, 446–454. [Google Scholar] [CrossRef]
- Bolelli, G.; Giovanardi, R.; Lusvarghi, L.; Manfredini, T. Corrosion resistance of HVOF-sprayed coatings for hard chrome replacement. Corros. Sci. 2006, 48, 3375–3397. [Google Scholar] [CrossRef]
- Fanicchia, F.; Axinte, D.A.; Kell, J.; McIntyre, R.; Brewster, G.; Norton, A.D. Combustion flame spray of CoNiCrAlY& YSZ coatings. Surf. Coat. Technol. 2017, 315, 546–557. [Google Scholar] [CrossRef]
- Li, C.-J.; Wang, W.-Z. Quantitative characterization of lamellar microstructure of plasma-sprayed ceramic coatings through visualization of void distribution. Mater. Sci. Eng. A 2004, 386, 10–19. [Google Scholar] [CrossRef]
- Zhang, Q.; Feng, Y.; Chen, Z.; Liao, W.; Zhang, S.; Zhou, J.; Wu, L. Preparation and corrosion resistance of Ni-W-cf composite coating on P110 steel. Coatings 2022, 12, 231. [Google Scholar] [CrossRef]
Elements | Ni | W | Cr | B | Si | Fe | C |
---|---|---|---|---|---|---|---|
wt.% | Bal | 9.5 | 14.3 | 2.8 | 3.7 | 3.5 | 0.6 |
Spray Parameters | Standard Flame | Reducing Flame | |
---|---|---|---|
Coating (C1) | Coating (C2) | Coating (C3) | |
Acetylene pressure (bar) | 1.4 | 1.4 | 1.4 |
Oxygen pressure (bar) | 4 | 4 | 4 |
Gas flow (ball height: mm) | Acetylene: 84 Oxygen: 70 | Acetylene: 99 Oxygen: 55 | Acetylene: 99 Oxygen: 55 |
Air pressure (bar) | 3–4 | 3–4 | 3–4 |
Spray distance (mm) | 170 | 170 | 300 |
Spray angle | 90 | 90 | 90 |
Feed speed | 70 cm/min | 70 cm/min | 70 cm/min |
Coatings | Ecorr (mV SCE) | Icorr (µA/cm2) | ßa | ßc |
---|---|---|---|---|
S | −318.098 | 84.66 ± 3.1 | 265.13 ± 4.1 | 122.16 ± 5.1 |
C1 | −406.268 ± 4.2 | 5.844 ± 0.9 | 192.411 ± 3.8 | 132.406 ± 3.5 |
C2 | −464.699 ± 6.7 | 3.865 ± 0.7 | 235.104 ± 3.3 | 132.506 ± 3.1 |
C3 | −475.699 ± 5.1 | 2.027 ± 0.3 | 277.602 ± 4.9 | 132.603 ± 4.8 |
Time | Rs (Ω·cm−2) | Rp (Ω·cm−2) | (CPE)c (Ω−1·cm−2s−n) | W (Ω−1·cm−2S−0.5) | (CPE)c (Ω−1·cm−2 s−n) | n | Rt (Ω·cm−2) | χ2 × 10−4 |
---|---|---|---|---|---|---|---|---|
12 h | 8.144 × 10−3 | 15.79 | 21.31 | 10.33 | 52.3 | 0.76 | 0.353 | 9.581 |
96 h | 6.69 | 42.73 | 3.357 × 10−2 | 0.37 | 0.24 | 0.58 | 84.09 | 1.16 |
Coating C2 | ||||||||
---|---|---|---|---|---|---|---|---|
Time | Rs (Ω·cm−2) | Rpor (Ω·cm−2) | (CPE)c (Ω−1·cm−2·s−n) | (CPE)dl (Ω−1·cm−2·s−n) | n | Rt (Ω·cm−2) | W (Ω−1·cm−2·S−0.5) | χ2 × 10−3 |
12 h | 9.662 | 14.44 | 0.16 | 0.2133 | 0.62 | 405 | 8.526 | 4.90 |
96 h | 8.479 | 263.1 | 2.56 × 10−3 | 7.36 × 10−3 | 0.31 | 678.4 | 0.2285 | 6.79 |
Coating C3 | ||||||||
Time | Rs (Ω·cm−2) | Rpor (Ω·cm−2) | (CPE)c (Ω−1·cm−2·s−n) | (CPE)dl (Ω−1·cm−2·s−n) | n | Rt (Ω·cm−2) | W (Ω−1·cm−2·S−0.5) | χ2 × 10−4 |
12 h | 12.72 | 171.8 | 0.035 | 0.05 | 0.52 | 409.2 | 1.314 | 4.47 |
96 h | 8.323 | 213.3 | 0.015 | 0.017 | 0.37 | 850.5 | 123.9 | 7.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idir, A.; Delloro, F.; Younes, R.; Bradai, M.A.; Sadeddine, A.; Marginean, G. Comparative Study of Corrosion Performance of LVOF-Sprayed Ni-Based Composite Coatings Produced Using Standard and Reducing Flame Spray Stoichiometry. Materials 2024, 17, 458. https://doi.org/10.3390/ma17020458
Idir A, Delloro F, Younes R, Bradai MA, Sadeddine A, Marginean G. Comparative Study of Corrosion Performance of LVOF-Sprayed Ni-Based Composite Coatings Produced Using Standard and Reducing Flame Spray Stoichiometry. Materials. 2024; 17(2):458. https://doi.org/10.3390/ma17020458
Chicago/Turabian StyleIdir, Abdelhek, Francesco Delloro, Rassim Younes, Mohand Amokrane Bradai, Abdelhamid Sadeddine, and Gabriela Marginean. 2024. "Comparative Study of Corrosion Performance of LVOF-Sprayed Ni-Based Composite Coatings Produced Using Standard and Reducing Flame Spray Stoichiometry" Materials 17, no. 2: 458. https://doi.org/10.3390/ma17020458
APA StyleIdir, A., Delloro, F., Younes, R., Bradai, M. A., Sadeddine, A., & Marginean, G. (2024). Comparative Study of Corrosion Performance of LVOF-Sprayed Ni-Based Composite Coatings Produced Using Standard and Reducing Flame Spray Stoichiometry. Materials, 17(2), 458. https://doi.org/10.3390/ma17020458