Divalent Metal Ion Depletion from Wastewater by RVC Cathodes: A Critical Review
Abstract
:1. Introduction
2. Brief Comparison among Wastewater Treatment Techniques
3. Materials and Methods
3.1. Theoretical Approach
3.2. Experimental System Concept
4. Discussion
4.1. Nickel, Cobalt, and Zinc
4.2. Copper, Cadmium, and Lead
5. Dimensionless Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Ae is the three-dimensional electrode’s specific surface (cm−1) |
Ae−1 is the characteristic length (cm) |
ct is the concentration at time t (mol/cm3) |
D is the diffusion coefficient (cm2/s) |
F is the Faraday constant |
km is the mass transport coefficient (cm/s) |
L is the RVC cathode length (cm) |
Qv is the volumetric flowrate (cm3/s) |
n is the ion valence |
N is the number of recirculations |
Ncells is the number of cells |
S is the RVC cathode section (cm2) |
tr is the reactor residence time (s) |
tf is the total depletion time (s) |
Vr is the three-dimensional electrode’s volume (cm3) |
Vt is the solution volume (cm3) |
v is the linear velocity (cm/s) |
ε is the RVC void’s volume |
μ is the solution’s kinematic viscosity (cm2/s) |
α is the alpha level |
σx and σy are the standard deviations |
Covxy is the covariance |
r is the Pearson correlation coefficient |
rc is the critical Pearson coefficient |
fd is the degrees of freedom |
References
- Hu, M.; Wang, Y.; Ye, D. A Timely Review of Lithium-Ion Batteries in Electric Vehicles: Progress, Future Opportunities and Challenges. In Proceedings of the E3S Web of Conferences 6th International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE), Hangzhou, China, 13–15 August 2021; Volume 308, p. 01015. [Google Scholar]
- Pruthvija, B.; Lakshmi, K.P. Review on Battery Technology and its Challenges. Int. J. Sci. Eng. Res. 2020, 11, 1706–1713. [Google Scholar]
- Babic, U.; Suermann, M.; Buchi, F.N.; Gubler, L.; Schmidt, T.J. Critical Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development. J. Electrochem. Soc. 2017, 164, F387–F399. [Google Scholar] [CrossRef]
- Santos, A.L.; Cebola, M.-J.; Santos, D.M.F. Towards the Hydrogen Economy-A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers. Energies 2021, 14, 3193. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Dufour, J. End of life of fuel cells and hydrogen products: From technologies to strategies. Int. J. Hydrogen Energy 2019, 44, 20965–20977. [Google Scholar] [CrossRef]
- Fan, L.; Tu, Z.; Chan, S.H. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep. 2021, 7, 8421–8446. [Google Scholar]
- Poonam, K.; Sharma, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mary, N.L. Review—An Overview on Supercapacitors and Its Applications. J. Electrochem. Soc. 2022, 169, 020552. [Google Scholar]
- Jena, K.K.; Mayyas, A.T.; Mohanty, B.; Jena, B.K.; Jos, J.R.; Al Fantazi, A.; Chakraborty, B.; Almarzooqi, A.A. Recycling of Electrode Materials from Spent Lithium-Ion Batteries to Develop Graphene Nanosheets and Graphene−Molybdenum Disulfide Nanohybrid: Environmental Benefits, Analysis of Supercapacitor Performance, and Influence of Density Functional Theory Calculations. Energy Fuels 2022, 36, 2159–2170. [Google Scholar]
- Pražanová, A.; Knap, V.; Stroe, D.-I. Literature Review, Recycling of Lithium-Ion Batteries from Electric Vehicles, Part II: Environmental and Economic Perspective. Energies 2022, 15, 7356. [Google Scholar] [CrossRef]
- Steward, D.; Mayyas, A.; Mann, M. Economics and Challenges of Li-Ion Battery Recycling from End of Life Vehicles. Procedia Manuf. 2019, 33, 272–279. [Google Scholar] [CrossRef]
- Carmo, M.; Keeley, G.P.; Holtz, D.; Grube, T.; Robinius, M.; Muller, M.; Stolten, D. PEM water electrolysis: Innovative approaches towards catalyst separation, recovery and recycling. Int. J. Hydrogen Energy 2019, 44, 3450–3455. [Google Scholar] [CrossRef]
- Wittstock, R.; Pehlken, A.; Wark, M. Challenges in Automotive Fuel Cells Recycling. Recycling 2016, 1, 343–364. [Google Scholar] [CrossRef]
- Eh, C.L.M.; Tiong, A.N.T.; Kansedo, J.; Lim, C.H.; How, B.S.; Ng, W.P.Q. Circular Hydrogen Economy and Its Challenges. Chem. Eng. Trans. 2022, 94, 1273–1278. [Google Scholar]
- Yanshyna, O.; Weissman, H.; Rybtchinski, B. Recyclable electrochemical supercapacitors based on carbon nanotubes and organic nanocrystals. Nanoscale 2020, 12, 8909–8914. [Google Scholar] [CrossRef]
- Jiang, G.; Pickering, S.J. Recycling supercapacitors based on shredding and mild thermal treatment. Waste Manag. 2016, 48, 465–470. [Google Scholar] [CrossRef]
- Lupi, C.; Pasquali, M.; Dell’Era, A. Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes. Waste Manag. 2005, 25, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Lupi, C.; Pasquali, M.; Dell’Era, A. Studies concerning nickel electrowinning from acidic and alkaline electrolytes. Miner. Eng. 2006, 19, 1246–1250. [Google Scholar]
- Dell’Era, A.; Lupi, C.; Pasquali, M. Electrochemical Purification of Cobalt Polluted Effluents. In Proceedings of the REWAS 2008: Global Symposium on Recycling, Waste Treatment and Clean Technology, Cancun, Mexico, 12–15 October 2008; pp. 1413–1418. [Google Scholar]
- Ciro, E.; Dell’Era, A.; Pasquali, M.; Lupi, C. Indium electrowinning study from sulfate aqueous solution using different metal cathodes. J. Environ. Chem. Eng. 2020, 8, 103688. [Google Scholar]
- Perry, R.H.; Chilton, C.H. Chemical Engineers Handbook, 5th ed.; McGraw Hill: New York, NY, USA, 1973. [Google Scholar]
- Sulaymon, A.H.; Abbar, A.H. Scale-Up of Electrochemical Reactors. In Electrolysis; InTech: London, UK, 2012; Chapter 9; pp. 189–202, licensee InTech. [Google Scholar] [CrossRef]
- Levin, M. How to scale up scientifically: Scaling up manufacturing process. Pharm. Technol. 2005, 3, 4s–12s. [Google Scholar]
- Wichterle, K.; Ruzicka, M.C. Chapter: Scale-up fundamentals. In Scale-Up in Metallurgy; Lackner, M., Ed.; Verlag ProcessEng Engineering GmbH: Wien, Austria, 2010; pp. 1–33. ISBN 978-3-902655-10-3. [Google Scholar]
- Zlokarnik, M. Scale-up of Processes Using Material Systems with Variable Physical Properties. Chem. Biochem. Eng. Q. 2001, 15, 43–47. [Google Scholar] [CrossRef]
- Mithani, R.; Shenoi, S.; Fan, L.T.; Walawender, W.P. Ranking Dimensionless Groups in Fluidized-Bed Reactor Scale-Up. Int. J. Approx. Reason. 1990, 4, 69–85. [Google Scholar] [CrossRef]
- Buckingham, E. On Physically Similar Systems; Illustrations of the Use of Dimensional Equations. Phys. Rev. 1914, 4, 345–376. [Google Scholar]
- Rase, H. Chemical Reactor Design for Process Plants; Wiley-Interscience: New York, NY, USA, 1977. [Google Scholar]
- Kulkarni, M.M.; Sharma, A.P.; Rao, D.N. Use of dimensional analysis for scaling immiscible gas assisted gravity drainage (GAGD) experiments. In Proceedings of the International Symposium of the Society of Core Analysts, Toronto, ON, Canada, 21–25 August 2005; pp. 21–25. [Google Scholar]
- Mantall, C.L. Electrochemical Engineering, 4th ed.; Mc-Graw Hill: New York, NY, USA, 1960. [Google Scholar]
- Pletcher, D.; Whyte, I.; Walsh, F.C.; Millington, J.P. Reticulated vitreous carbon cathodes for metal ion removal from process streams Part I: Mass transport studies. J. Appl. Electrochem. 1991, 21, 659–666. [Google Scholar] [CrossRef]
- Podlaha, E.J.; Fenton, J.M. Characterization of a flow-by RVC electrode reactor for the removal of heavy metals from dilute solutions. J. Appl. Electrochem. 1995, 25, 299–306. [Google Scholar] [CrossRef]
- Hor, Y.P.; Mohamed, N. Removal and recovery of copper via a galvanic cementation system Part I: Single-pass reactor. J. Appl. Electrochem. 2003, 33, 279–285. [Google Scholar] [CrossRef]
- de Lourdes Llovera-Hernandez, M.; Alvarez-Gallegos, A.; Hernandez, J.A. Cadmium removal from dilute aqueous solutions under galvanostatic mode in a flow-through cell. Desalination Water Treat. 2016, 57, 22809–22817. [Google Scholar] [CrossRef]
- Dutra, A.J.B.; Espinola, A.; Borges, P.P. Cadmium removal from diluitedacqueous solutions by electrowinning in a flow by cell. Miner. Eng. 2000, 13, 1139–1148. [Google Scholar] [CrossRef]
- Bertazzoli, R.; Rodrigues, C.A.; Dallan, E.J.; Fukunaga, M.T.; Lanza, M.R.V.; Leme, R.R.; Widner, R.C. Mass transport properties of a flow-through electrolytic reactor using a porous electrode: Performance and figures of merit for Pb+2 removal. Braz. J. Chem. Eng. 1998, 15, 4. [Google Scholar]
- Widner, R.C.; Sousa, M.F.B.; Bertazzoli, R. Electrolytic removal of lead using a flow-through cell with a reticulated vitreous carbon cathode. J. Appl. Electrochem. 1998, 28, 201–207. [Google Scholar] [CrossRef]
- Tan, W.X.; Hasnat, M.A.; Ramalan, N.H.M.; Soh, W.M.; Mohamed, N. Influence of flow rates on the electrogenerative Co2+ recovery at a reticulated vitreous carbon cathode. Chem. Eng. J. 2012, 189–190, 182–187. [Google Scholar] [CrossRef]
- Tramontina, J.; Azambuja, D.S.; Piatnicki, C.M.S. Removal of Cd2+ Ion from Diluted Aqueous Solutions by Electrodeposition on Reticulated Vitreous Carbon Electrodes. J. Braz. Chem. Soc. 2002, 13, 4. [Google Scholar] [CrossRef]
- Ramalan, N.H.M.; Karoonian, F.S.; Etesami, M.; Wen-Min, A.; Hasnat, S.M.; Mohamed, N. Impulsive removal of Pb(II) at a 3-D reticulated vitreous carbon cathode. Chem. Eng. J. 2012, 203, 123–129. [Google Scholar] [CrossRef]
- Friedrich, J.M.; Ponce-de-Leon, C.; Reade, G.W.; Walsh, F.C. Reticulated vitreous carbon as an electrode material. J. Electroanal. Chem. 2004, 561, 203–217. [Google Scholar] [CrossRef]
- Czerwinski, A.; Obrebowski, S.; Kotowski, J.; Rogulski, Z.; Skowronskic, J.M.; Krawczyk, P.; Rozmanowski, T.; Bajsert, M.; Przystałowski, M.; Buczkowska-Biniecka, M.; et al. Electrochemical behavior of negative electrode of lead-acid cells based on reticulated vitreous carbon carrier. J Power Sources 2010, 195, 7524–7529. [Google Scholar] [CrossRef]
- Tangirala, R.C.; Low, C.T.J.; Ponce-de-Leon, C.; Campbell, S.A.; Walsh, F.C. Copper deposition at segmented, reticulated vitreous carbon cathode in Hull cell. Trans. Inst. Met. Finish. 2010, 88, 84–92. [Google Scholar] [CrossRef]
- Ponce de Leon, C.; Pletcher, D. The removal of Pb from aqueous solutions using a reticulated vitreous carbon cathode cell-the influence of the electrolyte medium. Electrochim. Acta 1996, 41, 533–541. [Google Scholar] [CrossRef]
- Polcaro, A.M.; Palmas, S.; Mascia, M.; Renoldi, F.; Correa dos Santos, R.L. Reticulated Vitreous Carbon Electrode for Copper(II) Removal from Dilute Acid Solutions: Effect of the Dissolved Oxygen. Ind. Eng. Chem. Res. 1999, 38, 1400–1405. [Google Scholar] [CrossRef]
- Dell’Era, A.; Pasquali, M.; Lupi, C.; Zaza, F. Purification of nickel or cobalt ion containing effluents by electrolysis on reticulated vitreous carbon cathode. Hydrometallurgy 2014, 150, 1–8. [Google Scholar] [CrossRef]
- Dimaculangan, D.A.A.; Bungay, V.C.; Sorian, A.N. Determination of Diffusion Coefficients of Heavy Metal Ions (Ni3+, Zn2+, Ba2+, and Mn2+) at Infinite Dilution through Electrolytic Conductivity Measurements. ASEAN J. Chem. Eng. 2022, 22, 58–71. [Google Scholar]
- Patil, S.F.; Adhyapak, N.G.; Patil, P.R. Diffusion of Zinc Chloride in Aqueous Solution at 25 °C. Int. J. Appl. Radiat. Isot. 1981, 35, 761–766. [Google Scholar]
- Patil, S.F.; Borhade, A.V.; Nath, M. Diffusivity of some zinc and cobalt salt in water. J. Chem. Eng. Data 1993, 38, 574–576. [Google Scholar]
- Lanza, M.R.V.; Bertazzoli, R. Removal of Zn(II) from chloride medium using a porous electrode: Current penetration within the cathode. J. Appl. Electrochem. 2000, 30, 61–70. [Google Scholar]
- Leaist, D.G. Tracer diffusion of cobalt(II), nickel(II), copper(II) and hydrogen ions in aqueous sodium sulphate solutions. Electrochim. Acta 1989, 34, 651–655. [Google Scholar]
- Moats, M.S.; Hiskey, J.B.; Collins, D.W. The effect of copper acid and temperature on the diffusion coefficient of cupric ions in simulated electrorefining electrolytes. Hydrometallurgy 2000, 56, 255–268. [Google Scholar]
- Noulty, R.A.; Leaist, D.G. Diffusion in Aqueous Copper Sulfate and Copper Sulfate-Sulfuric Acid Solutions. J. Sol. Chem. 1987, 16, 813–825. [Google Scholar] [CrossRef]
- Hayes, P.C. Chapter 6, Hydrometallurgy. In Process Selection in Extractive Metallurgy, 1st ed.; Hayes Publishing Co.: Brisbane, Australia, 1985. [Google Scholar]
- Leyma, R.; Platzer, S.; Jirsa, F.; Kandioller, W.; Krachler, R.; Keppler, B.K. Novel thiosalicylate-based ionic liquids for heavy metal extractions. J. Hazard. Mater. 2016, 314, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.A.; Mustaqeem, M.; Khaled, M. Water treatment technologies in removing heavy metal ions from wastewater: A review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100617. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 2018, 26, 289–300. [Google Scholar]
- Shamsuddin, M. Physical Chemistry of Metallurgical Processes; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019, 48, 463–487. [Google Scholar] [CrossRef]
- Sitko, R.; Musielak, M.; Serda, M.; Talik, E.; Gagor, A.; Zawisza, B.; Malecka, M. Graphene oxide decorated with fullerenol nanoparticles for highly efficient removal of Pb(II) ions and ultrasensitive detection by total- reflection X-ray fluorescence spectrometry. Sep. Purif. Technol. 2021, 277, 119450–119460. [Google Scholar] [CrossRef]
- Ghassabzadeh, H.; Torab-Mostaedi, M.; Mohaddespour, A.; Maragheh, M.G.; Ahmadi, S.J.; Zaheri, P. Characterizations of Co(II) and Pb(II) removal process from aqueous solutions using expanded perlite. Desalination 2010, 261, 73–79. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P.; Robert, D. Modified TiO2 for environmental photocatalytic applications: A review. Ind. Eng. Chem. Res. 2013, 52, 3581–3599. [Google Scholar] [CrossRef]
- Niu, J.; Liu, X.; Xia, K.; Xu, L.; Xu, Y.; Fang, X.; Lu, W. Effect of Electrodeposition Parameters on the Morphology of Three-Dimensional Porous Copper Foams. Int. J. Electrochem. Sci. 2015, 10, 7331–7340. [Google Scholar] [CrossRef]
- Sengupta, S.; Patra, A.; Jena, S.; Das, K.; Das, S. A Study on the Effect of Electrodeposition Parameters on the Morphology of Porous Nickel Electrodeposits. Metall. Mater. Trans. A 2018, 49, 920–937. [Google Scholar]
- Nikolic, N.D.; Maksimovic, V.M.; Avramovic, L. Correlation of Morphology and Crystal Structure of Metal Powders Produced by Electrolysis Processes. Metals 2021, 11, 859. [Google Scholar]
Ion | RVC Section (cm2) | Ae (cm2/cm3) | Diffusivity (cm2/s) | Schmidt Number (Sc) | Reference(s) |
---|---|---|---|---|---|
Zn+2 | 6.5 | 27–40–53–66 | 1.2 × 10−5 [47,48,49] Chloride solution | 917 | [50] |
Cu+2 | 6 | 7–66 | 0.49 × 10−5 [31,51,52,53] Sulfate solution | 2200 | [31] |
4 | 27 | 0.45 × 10−5 [51,52,53] Sulfate solution | 2200 | [32] | |
2 | 53 | 0.5 × 10−5 [51,52,53] Sulfate solution | 2200 | [33] | |
Cd+2 | 5 | 40 | 0.71 × 10−5 [39] Sulfate solution | 1550 | [34] |
6 | 40 | 0.71 × 10−5 [39] Sulfate solution | 1550 | [35] | |
Pb+2 | 6.5 | 11–27–37–53 | 2.0 × 10−5 [36] Nitrate solution | 550 | [36,37] |
6 | 7–40–66 | 0.7 × 10−5 [44] Chloride solution | 1570 | [44] | |
Co+2 | 1.5 | 53 | 0.65 × 10−5 [51] Sulfate solution | 1830 | [38] |
10 | 27 | 0.65 × 10−5 [51] Sulfate solution | 1830 | [46] | |
Ni+2 | 10 | 27 | 0.6 × 10−5 [51] Sulfate solution | 1830 | [46] |
Ion | References | |
---|---|---|
Ni+2 | −1100 mV vs. SCE | [46] |
Co+2 | −1200 mV vs. SCE | [46] |
Zn+2 | −1400 mV vs. SCE | [50] |
Cu+2 | −500 mV vs. SCE | [31] |
Cd+2 | −850 mV vs. SCE | [35] |
Pb+2 | −800 mV vs. SCE | [36,44] |
σx | σy | Covxy | r | rc | α | fd |
---|---|---|---|---|---|---|
0.88 | 0.58 | 0.37 | 0.71 | 0.174 | 0.05 | 125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dell’Era, A.; Lupi, C.; Ciro, E.; Scaramuzzo, F.A.; Pasquali, M. Divalent Metal Ion Depletion from Wastewater by RVC Cathodes: A Critical Review. Materials 2024, 17, 464. https://doi.org/10.3390/ma17020464
Dell’Era A, Lupi C, Ciro E, Scaramuzzo FA, Pasquali M. Divalent Metal Ion Depletion from Wastewater by RVC Cathodes: A Critical Review. Materials. 2024; 17(2):464. https://doi.org/10.3390/ma17020464
Chicago/Turabian StyleDell’Era, Alessandro, Carla Lupi, Erwin Ciro, Francesca A. Scaramuzzo, and Mauro Pasquali. 2024. "Divalent Metal Ion Depletion from Wastewater by RVC Cathodes: A Critical Review" Materials 17, no. 2: 464. https://doi.org/10.3390/ma17020464
APA StyleDell’Era, A., Lupi, C., Ciro, E., Scaramuzzo, F. A., & Pasquali, M. (2024). Divalent Metal Ion Depletion from Wastewater by RVC Cathodes: A Critical Review. Materials, 17(2), 464. https://doi.org/10.3390/ma17020464