Effect of High-Frequency Electric Pulse on the Solidification Microstructure and Properties of Hypoeutectic Al-Si Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure Analysis
3.2. Grain Refinement Mechanism
3.3. Solid Solution Mechanism
3.4. Mechanical Property
4. Conclusions
- (1)
- In an argon gas atmosphere, high-frequency pulses were applied to induce grain refinement through a process known as incubation treatment. The dominant mechanism for grain refinement was attributed to the cluster theory and intense electromagnetic stirring. At a frequency of 1000 Hz, the grain size was measured at 13.87 μm. Further increasing the pulse frequency resulted in a larger re-melting area and grain size.
- (2)
- After undergoing high-frequency pulse processing, the eutectic structure of Al-9Si transformed into fine and dense clusters, with nearly the complete elimination of primary Si. Spectral analysis revealed that increased pulse frequency led to a higher solubility of Si elements in α-Al.
- (3)
- High-frequency pulses can enhance the comprehensive mechanical properties of sub-eutectic Al-9Si. The average friction coefficient is the smallest, the wear depth is the shallowest when the applied current density is 300 A/cm2, and the frequency is 1000 Hz when the material hardness is a maximum of 56.13 HV.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, K.; Gottstein, G. Microstructure and modification mechanisms of Si phase in as-thixoformed alloy A356. Int. J. Mater. Res. 2021, 93, 724–729. [Google Scholar] [CrossRef]
- Abboud, J.H.; Mazumder, J. Ultra-refined primary and eutectic silicon in rapidly solidified laser produced hypereutectic Al–Si alloys. Adv. Mater. Process. Technol. 2021, 8, 2510–2532. [Google Scholar] [CrossRef]
- Manani, S.; Pradhan, A.K. Effects of melt thermal treatment on cast Al-Si alloys: A review. Mater. Today Proc. 2022, 62, 6568–6572. [Google Scholar] [CrossRef]
- Gursoy, O.; Timelli, G. Lanthanides: A focused review of eutectic modification in hypoeutectic Al–Si alloys. J. Mater. Res. Technol. 2020, 9, 8652–8666. [Google Scholar] [CrossRef]
- Yu, H.; Wang, N.; Guan, R.; Tie, D.; Li, Z.; An, Y.; Zhang, Y. Evolution of secondary phase particles during deformation of Al-5Ti-1B master alloy and their effect on α-Al grain refinement. J. Mater. Sci. Technol. 2018, 34, 2297–2306. [Google Scholar] [CrossRef]
- Karbalaei Akbari, M.; Baharvandi, H.R.; Shirvanimoghaddam, K. Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. 2015, 66, 150–161. [Google Scholar] [CrossRef]
- Wang, M.; Hu, K.; Liu, G.; Liu, X. Synchronous improvement of electrical and mechanical performance of A356 alloy reinforced by boron coupling nano-AlNp. J. Alloys Compd. 2020, 814, 152217. [Google Scholar] [CrossRef]
- Hekimoğlu, A.P.; Çaliş, M. Effect of arc re-melting on microstructure, mechanical and tribological properties of commercial 390A alloy. Trans. Nonferrous Met. Soc. China 2021, 31, 2264–2276. [Google Scholar] [CrossRef]
- Li, H.; Peng, L.; Meng, B.; Xu, Z.; Wang, L.; Ngaile, G.; Fu, M. Energy field assisted metal forming: Current status, challenges and prospects. Int. J. Mach. Tools Manuf. 2023, 192, 104075. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Wu, C. HF pulse effect on microstructure and properties of AC TIG butt-welded joint of 6061Al alloy. J. Manuf. Process. 2020, 56, 878–886. [Google Scholar] [CrossRef]
- Birinci, S.; Basit, S.; Maraşlı, N. Influences of Directions and Magnitudes of Static Electrical Field on Microstructure and Mechanical Properties for Al–Si Eutectic Alloy. J. Mater. Eng. Perform. 2022, 31, 5070–5079. [Google Scholar]
- Wang, Y.; Zhao, Y.; Pan, D.; Xu, X.; Chong, X.; Yin, P. Multiple precipitates and weakened PLC effect in the electro-pulsing treated Al-Mg-Si alloy. Mater. Lett. 2020, 261, 127089. [Google Scholar] [CrossRef]
- Edry, I.; Shoihet, A.; Hayun, S. On the effects of electric current intensity and pulse frequency on the solidified structure of pure aluminum subjected to pulse magneto-oscillation treatment. J. Mater. Process. Technol. 2021, 288, 116844. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, J.; Liu, L. Grain refinement by pulse electric discharging and undercooling mechanism. Mater. Manuf. Process. 2011, 26, 249–254. [Google Scholar]
- Barnak, J.; Sprecher, A.; Conrad, H. Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing. Scr. Metall. Et Mater. 1995, 32, 879–884. [Google Scholar]
- Metan, V.; Eigenfeld, K.; Räbiger, D.; Leonhardt, M.; Eckert, S. Grain size control in Al–Si alloys by grain refinement and electromagnetic stirring. J. Alloys Compd. 2009, 487, 163–172. [Google Scholar] [CrossRef]
- Wang, W.; Bian, X.; Qin, J.; Syliusarenko, S. The atomic-structure changes in Al-16 pct Si alloy above the liquidus. Metall. Mater. Trans. A 2000, 31, 2163–2168. [Google Scholar]
- Lopes, J.G.; Agrawal, P.; Shen, J.; Schell, N.; Mishra, R.S.; Oliveira, J.P. Evolution of microstructure and mechanical properties in gas tungsten arc welded dual-phase Fe50Mn30Co10Cr10 high entropy alloy. Mater. Sci. Eng. A 2023, 878, 145233. [Google Scholar] [CrossRef]
- Shen, J.; Agrawal, P.; Rodrigues, T.A.; Lopes, J.G.; Schell, N.; He, J.; Zeng, Z.; Mishra, R.S.; Oliveira, J.P. Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe42Mn28Co10Cr15Si5 metastable high entropy alloy. Mater. Sci. Eng. A 2023, 867, 144722. [Google Scholar] [CrossRef]
- Stefanescu, D.M.; Ruxanda, R. Fundamentals of Solidification; ASM International: Detroit, MI, USA, 2004. [Google Scholar]
- Elliott, S.R. Medium-range structural order in covalent amorphous solids. Nature 1991, 354, 445–452. [Google Scholar] [CrossRef]
- Hoyer, W.; Jödicke, R. Short-range and medium-range order in liquid Au Ge alloys. J. Non-Cryst. Solids 1995, 192, 102–105. [Google Scholar] [CrossRef]
- Bian, X.; Xuemin, P.; Xubo, Q.; Minhua, J. Medium-range order clusters in metal melts. Sci. China Ser. E Technol. Sci. 2002, 45, 113–119. [Google Scholar] [CrossRef]
- Roik, O.S.; Kazimirov, V.P.; Sokolskii, V.E.; Galushko, S.M. Formation of the short-range order in Al-based liquid alloys. J. Non-Cryst. Solids 2013, 364, 34–39. [Google Scholar] [CrossRef]
- Chikova, O.A.; Sinitsin, N.I.; V’yukhin, V.V. Viscosity of Al–In Melts. Russ. J. Phys. Chem. A 2021, 95, 902–909. [Google Scholar] [CrossRef]
- Gangal, K.; Goudar, D.M.; Haider, J.; Devendra, K.; Kadi, R.V. Effects of thermal ageing on the wear behavior of the cerium modified Al-18si-3.6cu alloy. Adv. Mater. Process. Technol. 2023, 157, 1–19. [Google Scholar] [CrossRef]
- Gangal, K.; Devendra, K. Heat treatment effect on mechanical and wear properties of hypereutectic Al-Si-Cu-Ce alloy. Adv. Mater. Process. Technol. 2023, 1–23. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Y.; He, Y.-Z. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding. Mater. Des. 2011, 32, 1910–1915. [Google Scholar]
- Okokpujie, I.P.; Chima, P.C.; Tartibu, L.K. Experimental and 3D-Deform Finite Element Analysis on Tool Wear during Turning of Al-Si-Mg Alloy. Lubricants 2022, 10, 341. [Google Scholar]
- Kato, K. Wear in relation to friction—A review. Wear 2000, 241, 151–157. [Google Scholar]
- Kraus, M.; Lenzen, M.; Merklein, M. Contact pressure-dependent friction characterization by using a single sheet metal compression test. Wear 2021, 476, 203679. [Google Scholar] [CrossRef]
- Abboud, J.H.; Kayitmazbatir, M. Microstructural evolution and hardness of rapidly solidified hypereutectic Al-Si surface layers by laser remelting. Adv. Mater. Process. Technol. 2022, 8, 4136–4155. [Google Scholar] [CrossRef]
- Charandabi, F.K.; Jafarian, H.R.; Mahdavi, S.; Javaheri, V.; Heidarzadeh, A. Modification of microstructure, hardness, and wear characteristics of an automotive-grade Al-Si alloy after friction stir processing. J. Adhes. Sci. Technol. 2021, 35, 2696–2709. [Google Scholar] [CrossRef]
- Singh, K.; Kashyap, B.P. Effects of Remelting on Variations in Composition, Microstructure, and Hardness Property of Binary Al-Si Alloys. J. Mater. Eng. Perform. 2022, 32, 3043–3056. [Google Scholar] [CrossRef]
Element | Al | Zn | Cu | Mg | Others |
---|---|---|---|---|---|
Content | 89.481 | 0.611 | 0.387 | 0.156 | 0.241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Wang, F.; Zhang, S.; Zhou, Y.; Zhu, L. Effect of High-Frequency Electric Pulse on the Solidification Microstructure and Properties of Hypoeutectic Al-Si Alloy. Materials 2024, 17, 468. https://doi.org/10.3390/ma17020468
Guo J, Wang F, Zhang S, Zhou Y, Zhu L. Effect of High-Frequency Electric Pulse on the Solidification Microstructure and Properties of Hypoeutectic Al-Si Alloy. Materials. 2024; 17(2):468. https://doi.org/10.3390/ma17020468
Chicago/Turabian StyleGuo, Jianjun, Fang Wang, Shijie Zhang, Yifan Zhou, and Lin Zhu. 2024. "Effect of High-Frequency Electric Pulse on the Solidification Microstructure and Properties of Hypoeutectic Al-Si Alloy" Materials 17, no. 2: 468. https://doi.org/10.3390/ma17020468
APA StyleGuo, J., Wang, F., Zhang, S., Zhou, Y., & Zhu, L. (2024). Effect of High-Frequency Electric Pulse on the Solidification Microstructure and Properties of Hypoeutectic Al-Si Alloy. Materials, 17(2), 468. https://doi.org/10.3390/ma17020468