Structural and Photoelectronic Properties of κ-Ga2O3 Thin Films Grown on Polycrystalline Diamond Substrates
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optical Microscopy
3.2. X-ray Diffraction
3.3. Current-Voltage Measurements
3.4. Spectral Photoconductivity Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Moradpour, M.; Losito, M.; Franke, W.-T.; Ramasamy, S.; Baccoli, R.; Gatto, G. Wide Band Gap Devices and Their Application in Power Electronics. Energies 2022, 15, 9172. [Google Scholar] [CrossRef]
- Yuvaraja, S.; Khandelwal, V.; Tang, X.; Li, X. Wide bandgap semiconductor-based integrated circuits. Chip 2023, 2, 100072. [Google Scholar] [CrossRef]
- Grant, J.; Cunningham, W.; Blue, A.; O’Shea, V.; Vaitkus, J.; Gaubas, E.; Rahman, M. Wide bandgap semiconductor detectors for harsh radiation environments. Nucl. Instrum. Methods Phys. Res. A 2005, 546, 213–217. [Google Scholar] [CrossRef]
- Kim, M.; Ha, J.; Kwon, I.; Han, J.-H.; Cho, S.; Cho, I.H. A Novel One-Transistor Dynamic Random-Access Memory (1T DRAM) Featuring Partially Inserted Wide-Bandgap Double Barriers for High-Temperature Applications. Micromachines 2018, 9, 581. [Google Scholar] [CrossRef]
- Hou, X.; Zou, Y.; Ding, M.; Qin, Y.; Zhang, Z.; Ma, X.; Tan, P.; Yu, S.; Zhou, X.; Zhao, X.; et al. Review of polymorphous Ga2O3 materials and their solar-blind photodetector applications. J. Phys. D Appl. Phys. 2021, 54, 043001. [Google Scholar] [CrossRef]
- Girolami, M.; Serpente, V.; Mastellone, M.; Tardocchi, M.; Rebai, M.; Xiu, Q.; Liu, J.; Sun, Z.; Zhao, Y.; Valentini, V.; et al. Self-powered solar-blind ultrafast UV-C diamond detectors with asymmetric Schottky contacts. Carbon 2022, 189, 27–36. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Zhang, C.; Wang, J.; Li, H.; Wu, Z.; Li, P.; Tang, W. Fabrication of ε-Ga2O3 solar-blind photodetector with symmetric interdigital Schottky contacts responding to low intensity light signal. J. Phys. D Appl. Phys. 2020, 53, 295109. [Google Scholar] [CrossRef]
- Zhang, C.; Dou, W.; Yang, X.; Zang, H.; Chen, Y.; Fan, W.; Wang, S.; Zhou, W.; Chen, X.; Shan, C. X-ray Detectors Based on Ga2O3 Microwires. Materials 2023, 16, 4742. [Google Scholar] [CrossRef]
- Trucchi, D.M.; Allegrini, P.; Bellucci, A.; Calvani, P.; Galbiati, A.; Girolami, M. Resistant and sensitive single-crystal diamond dosimeters for ionizing radiation. Nucl. Instrum. Methods Phys. Res. A 2013, 718, 373–375. [Google Scholar] [CrossRef]
- Pettinato, S.; Girolami, M.; Olivieri, R.; Stravato, A.; Caruso, C.; Salvatori, S. A Diamond-Based Dose-per-Pulse X-ray Detector for Radiation Therapy. Materials 2021, 14, 5203. [Google Scholar] [CrossRef]
- Pettinato, S.; Girolami, M.; Olivieri, R.; Stravato, A.; Caruso, C.; Salvatori, S. Time-Resolved Dosimetry of Pulsed Photon Beams for Radiotherapy Based on Diamond Detector. IEEE Sens. J. 2022, 22, 12348–12356. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, Y.; Cary, P.H., IV; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef]
- Graebner, J.; Jin, S.; Kammlott, G.W.; Herb, J.A.; Gardinier, C.F. Large anisotropic thermal conductivity in synthetic diamond films. Nature 1992, 359, 401–403. [Google Scholar] [CrossRef]
- Gao, N.; Gao, L.; Yu, H. First-principles study of N and S co-doping in diamond. Diamond Relat. Mater. 2023, 132, 109651. [Google Scholar] [CrossRef]
- Górka, B.; Fernández-Varea, J.M.; Panettieri, V.; Nilsson, B. Optimization of a tissue-equivalent CVD-diamond dosimeter for radiotherapy using the Monte Carlo code PENELOPE. Nucl. Instrum. Meth. Phys. Res. A 2008, 593, 578–587. [Google Scholar] [CrossRef]
- Nandi, A.; Cherns, D.; Sanyal, I.; Kuball, M. Epitaxial Growth of (−201) β-Ga2O3 on (001) Diamond Substrates. Cryst. Growth Des. 2023, 23, 8290–8295. [Google Scholar] [CrossRef]
- Cheng, Z.; Wheeler, V.D.; Bai, T.; Shi, J.; Tadjer, M.J.; Feygelson, T.; Hobart, K.D.; Goorsky, M.S.; Graham, S. Integration of polycrystalline Ga2O3 on diamond for thermal management. Appl. Phys. Lett. 2020, 116, 062105. [Google Scholar] [CrossRef]
- Kusaba, T.; Sittimart, P.; Katamune, Y.; Kageura, T.; Naragino, H.; Ohmagari, S.; Valappil, S.M.; Nagano, S.; Zkria, A.; Yoshitake, T. Heteroepitaxial growth of β-Ga2O3 thin films on single crystalline diamond (111) substrates by radio frequency magnetron sputtering. Appl. Phys. Express 2023, 16, 105503. [Google Scholar] [CrossRef]
- Karim, M.R.; Chen, Z.; Feng, Z.; Huang, H.-L.; Johnson, J.M.; Tadjer, M.J.; Hwang, J.; Zhao, H. Two-step growth of β-Ga2O3 films on (100) diamond via low pressure chemical vapor deposition. J. Vac. Sci. Technol. A 2021, 39, 023411. [Google Scholar] [CrossRef]
- Mandal, S.; Arts, K.; Knoops, H.C.M.; Cuenca, J.A.; Klemencic, G.M.; Williams, O.A. Surface zeta potential and diamond growth on gallium oxide single crystal. Carbon 2021, 181, 79–86. [Google Scholar] [CrossRef]
- Malakoutian, M.; Song, Y.; Yuan, C.; Ren, C.; Spencer Lundh, J.; Lavelle, R.M.; Brown, J.E.; Snyder, D.W.; Graham, S.; Choi, S.; et al. Polycrystalline diamond growth on β-Ga2O3 for thermal management. Appl. Phys. Express 2021, 14, 055502. [Google Scholar] [CrossRef]
- Kaneko, K.; Fujita, S.; Hitora, T. A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique. Jpn. J. Appl. Phys. 2018, 57, 02CB18. [Google Scholar] [CrossRef]
- Pavesi, M.; Fabbri, F.; Boschi, F.; Piacentini, G.; Baraldi, A.; Bosi, M.; Gombia, E.; Parisini, A.; Fornari, R. ε-Ga2O3 epilayers as a material for solar-blind UV photodetectors. Mat. Chem. Phys. 2018, 205, 502–507. [Google Scholar] [CrossRef]
- Girolami, M.; Bosi, M.; Serpente, V.; Mastellone, M.; Seravalli, L.; Pettinato, S.; Salvatori, S.; Trucchi, D.M.; Fornari, R. Orthorhombic undoped κ-Ga2O3 epitaxial thin films for sensitive, fast, and stable direct X-ray detectors. J. Mater. Chem. C 2023, 11, 3759–3769. [Google Scholar] [CrossRef]
- Yao, Y.; Okur, S.; Lyle, L.A.M.; Tompa, G.S.; Salagaj, T.; Sbrockey, N.; Davis, R.F.; Porter, L.M. Growth and characterization of α-, β-, and ε-phases of Ga2O3 using MOCVD and HVPE techniques. Mater. Res. Lett. 2018, 6, 268–275. [Google Scholar] [CrossRef]
- Kimura, Y.; Ihara, T.; Ojima, T.; Oshima, R.; Sawabe, A.; Aida, H. Physical bending of heteroepitaxial diamond grown on an Ir/MgO substrate. Diamond Relat. Mater. 2023, 137, 110055. [Google Scholar] [CrossRef]
- Rasic, D.; Narayan, J. Epitaxial growth of thin films. In Crystal Growth; Glebovsky, V., Ed.; IntechOpen: London, UK, 2019; ISBN 978-1-83962-675-3. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Z.; Zhou, X. Electronic, Thermal, and Thermoelectric Transport Properties of ε-Ga2O3 from First Principles. ACS Omega 2022, 7, 11643–11653. [Google Scholar] [CrossRef]
- TM180 Datasheet. Available online: https://e6cvd.com/us/application/all/tm180-10-0x10-0mm-0-30mm-thick-pl.html (accessed on 14 October 2023).
- Cora, I.; Mezzadri, F.; Boschi, F.; Bosi, M.; Čaplovičová, M.; Calestani, G.; Dódony, I.; Pécz, B.; Fornari, R. The real structure of ε-Ga2O3 and its relation to κ-phase. Cryst. Eng. Comm. 2017, 19, 1509–1516. [Google Scholar] [CrossRef]
- International Center for Diffraction Data (ICDD), JCPDS-ICDD 2000 Tables. Available online: https://www.icdd.com/pdfsearch/ (accessed on 14 October 2023).
- Girolami, M.; Conte, G.; Trucchi, D.M.; Bellucci, A.; Oliva, P.; Kononenko, T.; Khomich, A.; Bolshakov, A.; Ralchenko, V.; Konov, V.; et al. Investigation with β-particles and protons of buried graphite pillars in single-crystal CVD diamond. Diamond Relat. Mater. 2018, 84, 1–10. [Google Scholar] [CrossRef]
- Tak, B.R.; Yang, M.-M.; Alexe, M.; Singh, R. Deep-Level Traps Responsible for Persistent Photocurrent in Pulsed-Laser-Deposited β-Ga2O3 Thin Films. Crystals 2021, 11, 1046. [Google Scholar] [CrossRef]
- Wang, H.; Ma, J.; Cong, L.; Song, D.; Fei, L.; Li, P.; Li, B.; Liu, Y. Solar-blind UV photodetector with low-dark current and high-gain based on ZnO/Au/Ga2O3 sandwich structure. Mater. Today Phys. 2022, 24, 100673. [Google Scholar] [CrossRef]
- Yu, J.; Nie, Z.; Dong, L.; Yuan, L.; Li, D.; Huang, Y.; Zhang, L.; Zhang, Y.; Jia, R. Influence of annealing temperature on structure and photoelectrical performance of β-Ga2O3/4H-SiC heterojunction photodetectors. J. Alloy Comp. 2019, 798, 458–466. [Google Scholar] [CrossRef]
- Wu, S.; Liang, C.; Zhang, J.; Wu, Z.; Wang, X.-L.; Zhou, R.; Wang, Y.; Wang, S.; Li, D.-S.; Wu, T. A Photoconductive X-ray Detector with a High Figure of Merit Based on an Open-Framework Chalcogenide Semiconductor. Angew. Chem. Int. Ed. 2020, 59, 18605–18610. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Xian, M.; Carey, P.; Fares, C.; Ren, F.; Tadjer, M.; Pearton, S.J.; Tu, T.Q.; Goto, K.; Kuramata, A. Vertical β-Ga2O3 Schottky rectifiers with 750 V reverse breakdown voltage at 600 K. J. Phys. D Appl. Phys. 2021, 54, 305103. [Google Scholar] [CrossRef]
- Li, Q.; Shen, K.; Li, X.; Yang, R.; Deng, Y.; Wang, D. Space-charge limited current in CdTe thin film solar cell. Appl. Phys. Lett. 2018, 112, 173901. [Google Scholar] [CrossRef]
- Joung, D.; Chunder, A.; Zhai, L.; Khondaker, S.I. Space charge limited conduction with exponential trap distribution in reduced graphene oxide sheets. Appl. Phys. Lett. 2010, 97, 093105. [Google Scholar] [CrossRef]
- Ghatak, S.; Ghosh, A. Observation of trap-assisted space charge limited conductivity in short channel MoS2 transistor. Appl. Phys. Lett. 2013, 103, 122103. [Google Scholar] [CrossRef]
- Fan, Z.-Y.; Yang, M.-J.; Fan, B.-Y.; Mavrič, A.; Pastukhova, N.; Valant, M.; Li, B.-L.; Feng, K.; Liu, D.-L.; Deng, G.-W.; et al. Plasma-enhanced atomic layer deposition of amorphous Ga2O3 for solar-blind photodetection. J. Electron. Sci. Technol. 2022, 20, 100176. [Google Scholar] [CrossRef]
- Hecht, K. Zum Mechanismus des lichtelektrischen Primärstromes in isolierenden Kristallen. Z. Physik 1932, 77, 235–245. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girolami, M.; Bosi, M.; Pettinato, S.; Ferrari, C.; Lolli, R.; Seravalli, L.; Serpente, V.; Mastellone, M.; Trucchi, D.M.; Fornari, R. Structural and Photoelectronic Properties of κ-Ga2O3 Thin Films Grown on Polycrystalline Diamond Substrates. Materials 2024, 17, 519. https://doi.org/10.3390/ma17020519
Girolami M, Bosi M, Pettinato S, Ferrari C, Lolli R, Seravalli L, Serpente V, Mastellone M, Trucchi DM, Fornari R. Structural and Photoelectronic Properties of κ-Ga2O3 Thin Films Grown on Polycrystalline Diamond Substrates. Materials. 2024; 17(2):519. https://doi.org/10.3390/ma17020519
Chicago/Turabian StyleGirolami, Marco, Matteo Bosi, Sara Pettinato, Claudio Ferrari, Riccardo Lolli, Luca Seravalli, Valerio Serpente, Matteo Mastellone, Daniele M. Trucchi, and Roberto Fornari. 2024. "Structural and Photoelectronic Properties of κ-Ga2O3 Thin Films Grown on Polycrystalline Diamond Substrates" Materials 17, no. 2: 519. https://doi.org/10.3390/ma17020519
APA StyleGirolami, M., Bosi, M., Pettinato, S., Ferrari, C., Lolli, R., Seravalli, L., Serpente, V., Mastellone, M., Trucchi, D. M., & Fornari, R. (2024). Structural and Photoelectronic Properties of κ-Ga2O3 Thin Films Grown on Polycrystalline Diamond Substrates. Materials, 17(2), 519. https://doi.org/10.3390/ma17020519