Constitutive Damage Model for Rubber Fiber-Reinforced Expansive Soil under Freeze–Thaw Cycles
Abstract
:1. Introduction
2. Materials and Methods
3. Damage Constitutive Model for ESR
4. Results
4.1. Analysis of Mechanical Properties of ESR
4.1.1. Effect of Freeze–Thaw Cycles on Critical States
4.1.2. Effect of Freeze–Thaw Cycles on Elastic Modulus
4.2. ESR Damage Characterization Analysis
4.3. Model Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Liu, S.; Alonso, E.; Wang, L.; Xu, L.; Li, Z. Volume changes and mechanical degradation of a compacted expansive soil under freeze-thaw cycles. Cold Reg. Sci. Technol. 2019, 157, 206–214. [Google Scholar] [CrossRef]
- Chen, L.; Yin, Z.; Zhang, P. Relationship of Resistivity with Water Content and Fissures of Unsaturated Expansive Soils. J. China Univ. Min. Technol. 2007, 17, 537–540. [Google Scholar] [CrossRef]
- Fityus, S.G.; Smith, D.W.; Allman, M.A. Expansive soil test site near Newcastle. J. Geotech. Geoenviron. 2004, 130, 686–695. [Google Scholar] [CrossRef]
- Rabab Ah, S.; Al Hattamleh, O.; Aldeeky, H.; Abu Alfoul, B. Effect of glass fiber on the properties of expansive soil and its utilization as subgrade reinforcement in pavement applications. Case Stud. Constr. Mater. 2021, 14, e00485. [Google Scholar] [CrossRef]
- Rezaei, M.; Ajalloeian, R.; Ghafoori, M. Geotechnical Properties of Problematic Soils Emphasis on Collapsible Cases. Int. J. Geosci. 2012, 03, 105–110. [Google Scholar] [CrossRef]
- Dai, Z.; Chen, S.; Li, J. The Failure Characteristics and Evolution Mechanism of the Expansive Soil Trench Slope. In Proceedings of the Panam Unsaturated Soils 2017: Applications, Dallas, TX, USA, 12–15 November 2017; pp. 196–205. [Google Scholar]
- Gourley, C.S.; Newill, D.; Schreiner, H.D. Expansive soils: TRL’s Research. In Engineering Characteristics of Arid Soils; CRC Press: Boca Raton, FL, USA, 2020; pp. 247–260. [Google Scholar]
- Li, Z.; Liu, L.; Yan, S.; Zhang, M.; Xia, J.; Xie, Y. Effect of freeze-thaw cycles on mechanical and porosity properties of recycled construction waste mixtures. Constr. Build. Mater. 2019, 210, 347–363. [Google Scholar] [CrossRef]
- Liu, B.; Ma, R.; Fan, H. Evaluation of the impact of freeze-thaw cycles on pore structure characteristics of black soil using X-ray computed tomography. Soil Tillage Res. 2021, 206, 104810. [Google Scholar] [CrossRef]
- Yuan, G.; Che, A.; Tang, H. Evaluation of soil damage degree under freeze—Thaw cycles through electrical measurements. Eng. Geol. 2021, 293, 106297. [Google Scholar] [CrossRef]
- Liu, J.; Chang, D.; Yu, Q. Influence of freeze-thaw cycles on mechanical properties of a silty sand. Eng. Geol. 2016, 210, 23–32. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Q.; Wang, N.; Wang, J.; Zhang, X.; Cheng, S.; Kong, Y. Effect of freeze-thaw cycles on shear strength of saline soil. Cold Reg. Sci. Technol. 2018, 154, 42–53. [Google Scholar] [CrossRef]
- Ahmadi, S.; Ghasemzadeh, H.; Changizi, F. Effects of A low-carbon emission additive on mechanical properties of fine-grained soil under freeze-thaw cycles. J. Clean. Prod. 2021, 304, 127157. [Google Scholar] [CrossRef]
- Sharma, M.; Satyam, N.; Reddy, K.R. Effect of freeze-thaw cycles on engineering properties of biocemented sand under different treatment conditions. Eng. Geol. 2021, 284, 106022. [Google Scholar] [CrossRef]
- Ma, R.; Jiang, Y.; Liu, B.; Fan, H. Effects of pore structure characterized by synchrotron-based micro-computed tomography on aggregate stability of black soil under freeze-thaw cycles. Soil Tillage Res. 2021, 207, 104855. [Google Scholar] [CrossRef]
- Xia, W.; Wang, Q.; Yu, Q.; Yao, M.; Sun, D.; Liu, J.; Wang, Z. Experimental investigation of the mechanical properties of hydrophobic polymer-modified soil subjected to freeze-thaw cycles. Acta Geotech. 2023, 18, 3623–3642. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, W.; Zhang, S.; Mu, Y.; Li, G. Effect of freeze-thaw cycles in mechanical behaviors of frozen loess. Cold Reg. Sci. Technol. 2018, 146, 9–18. [Google Scholar] [CrossRef]
- Thomas, B.S.; Gupta, R.C.; Panicker, V.J. Recycling of waste tire rubber as aggregate in concrete: Durability-related performance. J. Clean. Prod. 2016, 112, 504–513. [Google Scholar] [CrossRef]
- Bekhiti, M.; Trouzine, H.; Rabehi, M. Influence of waste tire rubber fibers on swelling behavior, unconfined compressive strength and ductility of cement stabilized bentonite clay soil. Constr. Build. Mater. 2019, 208, 304–313. [Google Scholar] [CrossRef]
- Naseem, A.; Mumtaz, W.; Fazal-e-Jalal; De Backer, H. Stabilization of Expansive Soil Using Tire Rubber Powder and Cement Kiln Dust. Soil Mech. Found. Eng. 2019, 56, 54–58. [Google Scholar] [CrossRef]
- Soltani, A.; Taheri, A.; Deng, A.; O’Kelly, B.C. Improved Geotechnical Behavior of an Expansive Soil Amended with Tire-Derived Aggregates Having Different Gradations. Minerals 2020, 10, 923. [Google Scholar] [CrossRef]
- Yang, Z.; Cheng, Z.; Ling, X.; Liu, X.; Wang, R.; Sun, Z.; Shi, W. An updated binary medium constitutive model of frozen rubber reinforced expansive soil under confining pressure. Cold Reg. Sci. Technol. 2023, 210, 103824. [Google Scholar] [CrossRef]
- Patil, U.; Valdes, J.R.; Evans, T.M. Swell Mitigation with Granulated Tire Rubber. J. Mater. Civ. Eng. 2011, 23, 721–727. [Google Scholar] [CrossRef]
- Trouzine, H.; Bekhiti, M.; Asroun, A. Effects of scrap tyre rubber fibre on swelling behaviour of two clayey soils in Algeria. Geosynth. Int. 2012, 19, 124–132. [Google Scholar] [CrossRef]
- Soltani, A.; Deng, A.; Taheri, A.; Mirzababaei, M. Rubber powder-polymer combined stabilization of South Australian expansive soils. Geosynth. Int. 2018, 25, 304–321. [Google Scholar] [CrossRef]
- Yadav, J.S.; Hussain, S.; Tiwari, S.K.; Garg, A. Assessment of the Load-Deformation Behaviour of Rubber Fibre-Reinforced Cemented Clayey Soil. Transp. Infrastruct. Geotechnol. 2019, 6, 105–136. [Google Scholar] [CrossRef]
- Narani, S.S.; Abbaspour, M.; Hosseini, S.M.M.M.; Aflaki, E.; Nejad, F.M. Sustainable reuse of Waste Tire Textile Fibers (WTTFs) as reinforcement materials for expansive soils: With a special focus on landfill liners/covers. J. Clean. Prod. 2020, 247, 119151. [Google Scholar] [CrossRef]
- Attom, M.F. The use of shredded waste tires to improve the geotechnical engineering properties of sands. Environ. Geol. 2006, 49, 497–503. [Google Scholar] [CrossRef]
- Anvari, S.M.; Shooshpasha, I.; Kutanaei, S.S. Effect of granulated rubber on shear strength of fine-grained sand. J. Rock Mech. Geotech. 2017, 9, 936–944. [Google Scholar] [CrossRef]
- Eidgahee, D.R.; Haddad, A.; Naderpour, H. Evaluation of shear strength parameters of granulated waste rubber using artificial neural networks and group method of data handling. Sci. Iran. 2019, 26, 3233–3244. [Google Scholar]
- Soltani, A.; Deng, A.; Taheri, A.; Mirzababaei, M.; Nikraz, H. Interfacial shear strength of rubber-reinforced clays: A dimensional analysis perspective. Geosynth. Int. 2019, 26, 164–183. [Google Scholar] [CrossRef]
- Akbulut, S.; Arasan, S.; Kalkan, E. Modification of clayey soils using scrap tire rubber and synthetic fibers. Appl. Clay Sci. 2007, 38, 23–32. [Google Scholar] [CrossRef]
- Akbarimehr, D.; Fakharian, K. Dynamic shear modulus and damping ratio of clay mixed with waste rubber using cyclic triaxial apparatus. Soil Dyn. Earthq. Eng. 2021, 140, 106435. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, Z.; Shi, W.; Wang, C.; Ling, X.; Li, J.; Guan, D. Investigation of rubber content and size on dynamic properties of expansive soil-rubber. Geosynth. Int. 2023, 31, 269–282. [Google Scholar] [CrossRef]
- Jaramillo, N.A.D.; Ferreira, J.W.D.S.; Malko, J.A.C.; Dal Toe Casagrande, M. Mechanical Behavior of Clayey Soil Reinforced with Recycled Tire Rubber Using Chips and Fibers. Geotech. Geol. Eng. 2022, 40, 3365–3378. [Google Scholar] [CrossRef]
- Kachnov, L.M. Time of the rupture process under creep conditions. Izv. Akad. Nauk. 1958, 8, 26–31. [Google Scholar]
- Lu, Z.H.; Chen, Z.H.; Fang, X.W.; Guo, J.F.; Zhou, H.Q. Structural damage model of unsaturated expansive soil and its application in multi-field couple analysis on expansive soil slope. Appl. Math. Mech. 2006, 27, 891–900. [Google Scholar] [CrossRef]
- Yin, Q.; Zhao, Y.; Gong, W.; Dai, G.; Zhu, M.; Zhu, W.; Xu, F. A fractal order creep-damage constitutive model of silty clay. Acta Geotech. 2023, 18, 3997–4016. [Google Scholar] [CrossRef]
- De Maio, U.; Greco, F.; Lonetti, P.; Pranno, A. A combined ALE-cohesive fracture approach for the arbitrary crack growth analysis. Eng. Fract. Mech. 2024, 301, 109996. [Google Scholar] [CrossRef]
- Jia, H.; Ding, S.; Zi, F.; Dong, Y.; Shen, Y. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks. Catena 2020, 195, 104915. [Google Scholar] [CrossRef]
- Li, J.; Zhu, L.; Zhou, K.; Chen, H.; Gao, L.; Lin, Y.; Shen, Y. Non-linear creep damage model of sandstone under freeze-thaw cycle. J. Cent. South Univ. 2021, 28, 954–967. [Google Scholar] [CrossRef]
- Celik, M.Y. Water absorption and P-wave velocity changes during freeze-thaw weathering process of crosscut travertine rocks. Environ. Earth Sci. 2017, 76, 409. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, S.; Kang, Y.; Liu, X. A prediction model for uniaxial compressive strength of deteriorated rocks due to freeze-thaw. Cold Reg. Sci. Technol. 2015, 120, 96–107. [Google Scholar] [CrossRef]
- Xing, K.; Zhou, Z.; Yang, H.; Liu, B. Macro-meso freeze-thaw damage mechanism of soil-rock mixtures with different rock contents. Int. J. Pavement Eng. 2020, 21, 9–19. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, Z.; Wang, M.; Zhu, L.; Tian, Y.; Han, D. Damage mechanism of pier concrete subjected to combined compressive stress, freeze-thaw, and salt attacks in saline soil. Constr. Build. Mater. 2022, 324, 126567. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Z.; Yang, H.; Gao, W.; Zhang, C. Freeze-thaw damage mechanism of elastic modulus of soil-rock mixtures at different confining pressures. J. Cent. South Univ. 2020, 27, 554–565. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Liu, S.; Guo, W.; Xu, F. Mechanical behaviour and permeability of expansive soils mixed with scrap tire rubbers subjected to freeze-thaw cycles. Cold Reg. Sci. Technol. 2022, 199, 103580. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, Z.; Shi, W.; Wang, C.; Ling, X.; Liu, X.; Guan, D.; Cheng, Z. Dynamic Properties of Expansive Soil-Rubber under Freeze—Thaw Cycles. J. Mater. Civ. Eng. 2023, 35, 04023026. [Google Scholar] [CrossRef]
- Zhang, Q.; Xia, Y.; Zhao, J.; Tang, C.; Zhang, B. Experimental investigation of crack evolution in expansive soil-rubber mixture (ESR) under freeze-thaw cycles. Cold Reg. Sci. Technol. 2024, 217, 104016. [Google Scholar] [CrossRef]
- Habibbeygi, F. Characterisation of the undrained shear strength of expansive clays at high initial water content using intrinsic concept. Int. J. Geomate 2018, 14, 176–182. [Google Scholar] [CrossRef]
- Akbarimehr, D.; Eslami, A.; Esmail, A. Geotechnical behaviour of clay soil mixed with rubber waste. J. Clean. Prod. 2020, 271, 122632. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, R.; Shi, W.; Sun, Z.; Ling, X. Investigation of the Shear and Pore Structure Characteristics of Rubber Fiber-Reinforced Expansive Soil. Appl. Sci. 2024, 14, 5794. [Google Scholar] [CrossRef]
- Lemaitre, J. How to Use Damage Mechanics. Nucl. Eng. Des. 1984, 80, 233–245. [Google Scholar] [CrossRef]
- Li, B.; Zhu, Z.; Ning, J.; Li, T.; Zhou, Z. Viscoelastic-plastic constitutive model with damage of frozen soil under impact loading and freeze-thaw loading. Int. J. Mech. Sci. 2022, 214, 537–548. [Google Scholar] [CrossRef]
- Tang, L.; Cong, S.; Geng, L.; Ling, X.; Gan, F. The effect of freeze-thaw cycling on the mechanical properties of expansive soils. Cold Reg. Sci. Technol. 2018, 145, 197–207. [Google Scholar] [CrossRef]
- Karim, M.E.; Rahman, M.M.; Karim, M.R.; Fourie, A.B.; Reid, D. Characteristics of Copper Tailings in Direct Simple Shearing: A Critical State Approach. J. Geotech. Geoenviron. 2023, 149, 4023018. [Google Scholar] [CrossRef]
- Xu, J.; Xu, C.; Yoshimoto, N.; Hyodo, M.; Kajiyama, S.; Huang, L. Experimental Investigation of the Mechanical Properties of Methane Hydrate-Bearing Sediments under High Effective Confining Pressure. J. Geotech. Geoenviron. 2022, 148, 4021190. [Google Scholar] [CrossRef]
- Niu, F.; He, J.; Jiang, H.; Jiao, C. Damage constitutive model for concrete under the coupling action of freeze-thaw cycles and load based on homogenization theory. J. Build. Eng. 2023, 76, 107152. [Google Scholar] [CrossRef]
- Roustaei, M.; Eslami, A.; Ghazavi, M. Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters. Cold Reg. Sci. Technol. 2015, 120, 127–137. [Google Scholar] [CrossRef]
- Wang, D.; Ma, W.; Niu, Y.; Chang, X.; Wen, Z. Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay. Cold Reg. Sci. Technol. 2007, 48, 34–43. [Google Scholar] [CrossRef]
- Kravchenko, E.; Liu, J.; Niu, W.; Zhang, S. Performance of clay soil reinforced with fibers subjected to freeze-thaw cycles. Cold Reg. Sci. Technol. 2018, 153, 18–24. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, X.; Yang, G. A study on mechanical properties and damage model of rock subjected to freeze-thaw cycles and confining pressure. Cold Reg. Sci. Technol. 2020, 174, 103056. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Natural moisture content | 6.10% |
Optimum moisture content | 16.00% |
Maximum dry density | 1.853 g·cm−3 |
Specific gravity | 2.73 |
Plastic limit | 22.30% |
Liquid limit | 57.80% |
Plasticity index | 35.50 |
Free swell ratio | 71.00% |
Quartz | 58.6% |
Calcite | 12.3% |
Albite | 16% |
Montmorillonite | 13.1% |
Sample Numbers | f (%) | Freeze–Thaw Cycles n | Confining Pressure σ3 (kPa) |
---|---|---|---|
ESR1, ESR2, ESR3 | 0 | 0 | 100, 200, 300 |
ESR4, ESR5, ESR6 | 5 | 0 | 100, 200, 300 |
ESR7, ESR8, ESR9 | 10 | 0 | 100, 200, 300 |
ESR10, ESR11, ESR12 | 15 | 0 | 100, 200, 300 |
ESR13, ESR14, ESR15 | 20 | 0 | 100, 200, 300 |
ESR16, ESR17, ESR18 | 10 | 1 | 100, 200, 300 |
ESR19, ESR20, ESR21 | 10 | 3 | 100, 200, 300 |
ESR22, ESR23, ESR24 | 10 | 6 | 100, 200, 300 |
ESR25, ESR26, ESR27 | 10 | 10 | 100, 200, 300 |
ESR28, ESR29, ESR30 | 10 | 15 | 100, 200, 300 |
Fiber Content f (%) | s | t | R2 |
---|---|---|---|
0 | 0.0350 | 13.761 | 0.9849 |
5 | 0.0300 | 12.169 | 0.9937 |
10 | 0.0334 | 9.246 | 0.9950 |
15 | 0.0385 | 4.473 | 0.9995 |
20 | 0.0399 | 2.586 | 0.9939 |
F-T Cycles | σ3 = 100 kPa | σ3 = 200 kPa | σ3 = 300 kPa | ||||||
---|---|---|---|---|---|---|---|---|---|
En/MPa | m | F0 | En/MPa | m | F0 | En/MPa | m | F0 | |
0 | 5.332 | 0.488 | 66.691 | 8.805 | 0.420 | 89.740 | 9.151 | 0.462 | 192.595 |
1 | 4.303 | 0.549 | 62.369 | 5.728 | 0.566 | 121.933 | 8.393 | 0.493 | 145.976 |
3 | 3.376 | 0.551 | 74.816 | 4.057 | 0.626 | 171.457 | 5.977 | 0.565 | 173.513 |
6 | 3.278 | 0.574 | 75.489 | 4.094 | 0.581 | 163.982 | 4.971 | 0.553 | 171.341 |
10 | 2.164 | 0.692 | 93.296 | 3.477 | 0.648 | 176.865 | 3.860 | 0.765 | 233.564 |
15 | 2.007 | 0.638 | 78.918 | 3.208 | 0.662 | 154.548 | 3.852 | 0.753 | 222.195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Yang, Z.; Ling, X.; Shi, W.; Sun, Z.; Qin, X. Constitutive Damage Model for Rubber Fiber-Reinforced Expansive Soil under Freeze–Thaw Cycles. Materials 2024, 17, 4979. https://doi.org/10.3390/ma17204979
Wang R, Yang Z, Ling X, Shi W, Sun Z, Qin X. Constitutive Damage Model for Rubber Fiber-Reinforced Expansive Soil under Freeze–Thaw Cycles. Materials. 2024; 17(20):4979. https://doi.org/10.3390/ma17204979
Chicago/Turabian StyleWang, Rongchang, Zhongnian Yang, Xianzhang Ling, Wei Shi, Zhenxing Sun, and Xipeng Qin. 2024. "Constitutive Damage Model for Rubber Fiber-Reinforced Expansive Soil under Freeze–Thaw Cycles" Materials 17, no. 20: 4979. https://doi.org/10.3390/ma17204979
APA StyleWang, R., Yang, Z., Ling, X., Shi, W., Sun, Z., & Qin, X. (2024). Constitutive Damage Model for Rubber Fiber-Reinforced Expansive Soil under Freeze–Thaw Cycles. Materials, 17(20), 4979. https://doi.org/10.3390/ma17204979