Microstructural and Performance Analysis of (TiAl)95−xCu5Nix Coatings Prepared via Laser Surface Cladding on Ti–6Al–4V Substrates
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Phase Analysis
3.2. Microstructural Characterization
3.3. Hardness and Wear Analysis
3.4. Tensile Property Analysis
4. Conclusions
- The coating mainly consists of Ti3Al and Ti(Al, Cu)2 phases, with Ni fully dissolved in the Ti(Al, Cu)2 phase and some TiAl phases, resulting in a multiphase structure that effectively balances strength and toughness. A strong interface is observed between the Ti3Al and Ti(Al, Cu)2 phases. At a microscopic level, the incorporation of Ni alters the phase composition of the coating. Ni, a solid solution within the Ti(Al, Cu)2 phase, induces a solid solution hardening effect, which improves the various properties of the coating.
- Adding Ni to TiAlCu improves the various properties of the coatings through solid solution strengthening. With increasing Ni content, the hardness increases, while wear resistance and mechanical properties initially improve and then decline. Under 10 and 30 N loads, the coatings exhibit significantly lower friction coefficients, smaller width and depth of abrasion marks, and further reduced wear volumes than the substrate, indicating significantly improved wear resistance.
- At the microscopic level, the addition of Ni alters the phase compositions and grain structures of the coatings. Acting as a solid solution in the Ti(Al, Cu)2 phase, Ni induces a solid solution hardening effect, further expanding the performance of the coating.
- Tensile tests reveal that with increasing Ni content, the plasticity of the coatings initially rises and subsequently falls. Additionally, the coatings exhibit a ductile fracture, characterized by increased toughness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, H.Z.; Lian, X.J. Research of corrosion and wear resistance coatings in marine engineering environment. Chin. J. Nonferrous Met. 2023, 33, 1179–1208. [Google Scholar]
- Liang, J.; Liu, Y.; Yang, S.; Yin, X.; Chen, S.; Liu, C. Microstructure and wear resistance of laser cladding Ti-Al-Ni-Si composite coatings. Surf. Coat. Technol. 2022, 445, 128727. [Google Scholar] [CrossRef]
- Li, N.; Liu, W.; Xiong, H.; Qin, R.; Huang, S.; Zhang, G.; Gao, C. In-situ reaction of Ti-Si-C composite powder and formation mechanism of laser deposited Ti6Al4V/(TiC + Ti3SiC2) system functionally graded material. Mater. Des. 2019, 183, 108155. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Hao, X.; Zhang, X.; Liu, H. Lightweight refractory high entropy alloy coating by laser cladding on Ti–6Al–4V surface. Vacuum 2021, 183, 109823. [Google Scholar] [CrossRef]
- Cui, H.Z.; Jiang, D. Research Progress of High-Entropy Alloy Coatings. Acta Metall. Sin. 2022, 58, 17–27. [Google Scholar]
- Ren, Z.Y.; Hu, Y.L.; Tong, Y.; Cai, Z.H.; Liu, J.; Wang, H.D.; Liao, J.Z.; Xu, S.; Li, L.K. Wear-resistant NbMoTaWTi high entropy alloy coating prepared by laser cladding on TC4 titanium alloy. Tribol. Int. 2023, 182, 108366. [Google Scholar] [CrossRef]
- Zhang, T.G.; Zhuang, H.F.; Zhang, Q.; Yao, B.; Yang, F. Influence of Y2O3 on the microstructure and tribological properties of Ti-based wear-resistant laser-clad layers on TC4 alloy. Ceram. Int. 2020, 46, 13711–13723. [Google Scholar] [CrossRef]
- Li, J.N.; Chen, C.Z.; Squartini, T.; He, Q.S. A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy. Appl. Surf. Sci. 2010, 257, 1550–1555. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Song, X.J.; Liu, M.L.; Jia, W.C.; Yin, Z.L.; Wang, Q.Z.; Zhang, Y.H.; Jiang, D.; Song, Q.; Cui, H.Z. Improved wear resistance of TiAl composite coatings through NbC@(Ti, Nb)2AlC core-shell structure and nanoscale precipitation strengthening. Vacuum 2023, 213, 112091. [Google Scholar] [CrossRef]
- Ma, T.F.; Li, Q.Y.; Wang, Y.P.; Wang, X.H.; Dong, D.; Zhu, D. Microstructure and mechanical properties of micro-nano Ti2AlC-reinforced TiAl composites. Intermetallics 2022, 146, 107563. [Google Scholar] [CrossRef]
- Wang, Y.P.; Rong, G.F.; Ma, T.F.; Chen, Z.X.; Zhang, X.F.; Zhu, D.D.; Fang, H.Z.; Chen, R.R. In-situ synthesized a dual-scale Ti2AlC reinforced TiAl composites with superior mechanical properties. J. Mater. Res. Technol. 2024, 28, 1667–1678. [Google Scholar] [CrossRef]
- Akbarpour, M.R.; Moniri Javadhesari, S. Wear performance of novel nanostructured Ti-Cu intermetallic alloy as a potential material for biomedical applications. J. Alloys Compd. 2017, 699, 882–886. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, D.; Xu, W.; Yu, A.; Zhang, J.; Tamaddon, M.; Zhang, J.; Qu, X.; Liu, C.; Su, B. The effect of Cu content on corrosion, wear and tribocorrosion resistance of Ti-Mo-Cu alloy for load-bearing bone implants. Corros. Sci. 2020, 177, 109007. [Google Scholar] [CrossRef]
- Yan, H.; Liu, K.; Zhang, P.; Zhao, J.; Qin, Y.; Lu, Q.; Yu, Z. Fabrication and tribological behaviors of Ti3SiC2/Ti5Si3/TiC/Ni-based composite coatings by laser cladding for self-lubricating applications. Opt. Laser Technol. 2020, 126, 106077. [Google Scholar] [CrossRef]
- Lou, L.Y.; Liu, K.C.; Jia, Y.J.; Ji, G.; Wang, W.; Li, C.J.; Li, C.X. Microstructure and properties of lightweight Al0.2CrNbTiV refractory high entropy alloy coating with different dilutions deposited by high speed laser cladding. Surf. Coat. Technol. 2022, 447, 128873. [Google Scholar] [CrossRef]
- Cao, F.; Cui, H.; Song, X.; Gao, L.; Liu, M.; Qiao, Q.; Kong, H. Fabrication of multi-scale TiC and stainless steel composite coatings via circular oscillating laser towards superior wear and corrosion resistance of aluminum alloy. J. Mater. Sci. Technol. 2024, 177, 191–204. [Google Scholar] [CrossRef]
- Niu, G.B.; Wang, D.P.; Yang, Z.W.; Wang, Y. Microstructure and mechanical properties of Al2O3/TiAl joints brazed with B powders reinforced Ag-Cu-Ti based composite fillers. Ceram. Int. 2017, 43, 439–450. [Google Scholar] [CrossRef]
- Zhu, B.; Hu, Q.; Zeng, X.; Meng, L.; Liu, X.; Xu, G. Effect of intrinsic thermal cycles on the microstructure and mechanical properties of heat affect zones in laser cladding coatings on full-scale rails. Surf. Coat. Technol. 2023, 473, 130032. [Google Scholar] [CrossRef]
- Zhang, H.; He, Y.; Pan, Y. Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening. Scr. Mater. 2013, 69, 342–345. [Google Scholar] [CrossRef]
- Hu, D.; Liu, Y.; Chen, H.; Liu, J.; Wang, M. Effect of TiC addition on the microstructure and properties of Ni3Ta–TaC reinforced Ni-based wear-resistant coating. Ceram. Int. 2021, 47, 23194–23202. [Google Scholar] [CrossRef]
- Chen, N.; Xiao, H.; Ren, L.; Huang, F.; Chen, Y.; Cao, S.; Wu, H.; Zhu, L. Microstructure and tribological properties of laser-cladded TiC/TiAl composite coatings on TC4 alloy. Tribol. Int. 2024, 192, 109236. [Google Scholar] [CrossRef]
- Li, M.Y.; Han, B.; Song, L.X.; He, Q.K. Enhanced surface layers by laser cladding and ion sulfurization processing towards improved wear-resistance and self-lubrication performances. Appl. Surf. Sci. 2020, 503, 144226. [Google Scholar] [CrossRef]
- Cai, Y.C.; Zhu, L.S.; Cui, Y.; Geng, K.P.; Manladan, S.M.; Luo, Z.; Han, J. Strengthening mechanisms in multi-phase FeCoCrNiAl1.0 high-entropy alloy cladding layer. Mater. Charact. 2020, 159, 110037. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Q.; Han, B.; Li, M.Y.; Hu, C.Y.; Wang, J.L. Comparative studies on microstructure and properties of CoCrFeMnNi high entropy alloy coatings fabricated by high-speed laser cladding and normal laser cladding. J. Alloys Compd. 2023, 947, 169517. [Google Scholar] [CrossRef]
- Kang, N.; Verdy, C.; Coddet, P.; Xie, Y.C.; Fu, Y.Q.; Liao, H.L.; Coddet, C. Effects of laser remelting process on the microstructure, roughness and microhardness of in-situ cold sprayed hypoeutectic Al-Si coating. Surf. Coat. Technol. 2017, 318, 355–359. [Google Scholar] [CrossRef]
- Senninger, O.; Voorhees, P.W. Eutectic growth in two-phase multicomponent alloys. Acta Mater. 2016, 116, 308–320. [Google Scholar] [CrossRef]
- Nie, M.H.; Zhang, S.; Wang, Z.Y.; Zhang, H.F.; Zhang, C.H.; Chen, H.T. Development of a novel method for measuring the interfacial bonding strength of laser cladding coatings. Opt. Laser Technol. 2022, 148, 107699. [Google Scholar] [CrossRef]
- Gao, Y.L.; Ma, G.L.; Gao, X.H. Microstructure and Wear Resistance of CoCrNiMnTix High-entropy Alloy Coating by Laser Cladding. Surf. Technol. 2022, 51, 351–358. [Google Scholar]
- Tian, J.Y.; Xu, P.; Liu, Q.B. Effects of stress-induced solid phase transformations on residual stress in laser cladding a Fe-Mn-Si-Cr-Ni alloy coating. Mater. Des. 2020, 193, 108824. [Google Scholar] [CrossRef]
- Li, Z.H.; Chai, L.J.; Qi, L.; Wang, Y.Y.; Liu, Y.Z.; Yang, T.; Wang, H.; Guo, N.; Zhao, Y.X. Laser-cladded Al-Cr-Ti ternary alloy coatings on Ti-4Al-2V alloy: Specific microstructure and enhanced surface performance. Surf. Coat. Technol. 2023, 452, 129073. [Google Scholar] [CrossRef]
- Sabzi, H.E.; Hernandez-Nava, E.; Li, X.H.; Fu, H.W.; San-Martín, D.; Rivera-Díaz-del-Castillo, P.E.J. Strengthening control in laser powder bed fusion of austenitic stainless steels via grain boundary engineering. Mater. Des. 2021, 212, 110246. [Google Scholar] [CrossRef]
- Aksoy, D.; Dingreville, R.; Spearot, D.E. Spectrum of embrittling potencies and relation to properties of symmetric-tilt grain boundaries. Acta Mater. 2021, 205, 116527. [Google Scholar] [CrossRef]
- Fang, Q.; Liu, Y.; Hu, D.W.; Zhao, Y.S.; Li, J.Y.; Chen, H. Effect of Ni on the microstructure and properties of laser cladding 316 L + 410 composite stainless steel coatings. Surf. Coat. Technol. 2024, 478, 130465. [Google Scholar] [CrossRef]
- Jiang, D.; Cui, H.; Chen, H.; Zhao, X.; Ma, G.; Song, X. Wear and corrosion properties of B4C-added CoCrNiMo high-entropy alloy coatings with in-situ coherent ceramic. Mater. Des. 2021, 210, 110068. [Google Scholar] [CrossRef]
- Rui, H.; Wu, M.P.; Chen, C.; Jie, D.D.; Gong, Y.L.; Miao, X.J. Microstructure evolution, mechanical properties of FeCrNiMnAl high entropy alloy coatings fabricated by laser cladding. Surf. Coat. Technol. 2022, 447, 128851. [Google Scholar] [CrossRef]
m(Ti)/g | m(Al)/g | m(Cu)/g | m(Ni)/g | Total/g | |
---|---|---|---|---|---|
Ni0 | 17.61 | 9.93 | 2.46 | 0 | 30 |
Ni3 | 16.78 | 9.46 | 2.42 | 1.34 | 30 |
Ni6 | 15.98 | 9.00 | 2.38 | 2.64 | 30 |
Ni9 | 15.19 | 8.56 | 2.35 | 3.90 | 30 |
Areas | Ti | Al | Cu | Ni |
---|---|---|---|---|
P1 | 64.68 | 27.70 | 3.64 | 3.98 |
P2 | 54.13 | 28.09 | 7.38 | 10.41 |
P3 | 52.83 | 29.60 | 5.49 | 12.07 |
P4 | 65.92 | 26.64 | 2.26 | 5.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, W.; Song, X.; Zhu, Y.; Jiang, D.; Liu, M.; Ji, Y.; Zhou, D.; Wang, Y. Microstructural and Performance Analysis of (TiAl)95−xCu5Nix Coatings Prepared via Laser Surface Cladding on Ti–6Al–4V Substrates. Materials 2024, 17, 5036. https://doi.org/10.3390/ma17205036
Jia W, Song X, Zhu Y, Jiang D, Liu M, Ji Y, Zhou D, Wang Y. Microstructural and Performance Analysis of (TiAl)95−xCu5Nix Coatings Prepared via Laser Surface Cladding on Ti–6Al–4V Substrates. Materials. 2024; 17(20):5036. https://doi.org/10.3390/ma17205036
Chicago/Turabian StyleJia, Wenchang, Xiaojie Song, Yuming Zhu, Di Jiang, Minglei Liu, Yupeng Ji, Dazhou Zhou, and Yi Wang. 2024. "Microstructural and Performance Analysis of (TiAl)95−xCu5Nix Coatings Prepared via Laser Surface Cladding on Ti–6Al–4V Substrates" Materials 17, no. 20: 5036. https://doi.org/10.3390/ma17205036
APA StyleJia, W., Song, X., Zhu, Y., Jiang, D., Liu, M., Ji, Y., Zhou, D., & Wang, Y. (2024). Microstructural and Performance Analysis of (TiAl)95−xCu5Nix Coatings Prepared via Laser Surface Cladding on Ti–6Al–4V Substrates. Materials, 17(20), 5036. https://doi.org/10.3390/ma17205036