Improving the Performance of Mortar under Carbonization Curing by Adjusting the Composition of Ternary Binders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Procedures
2.3. Experimental Methods
3. Results and Discussion
3.1. Compressive Strength
3.2. Compression Toughness
3.3. Carbon Shrinkage and Mass Loss
3.4. Water Absorption
3.5. Hydration Products and Microstructure
3.6. Carbon Sequestration
4. Conclusions
- (1)
- The compressive strength of cement mortar was promoted by 8.14% after CO2 curing for 3 days; thus, carbonization curing was beneficial to improve the mechanical properties of mortar, but it still had negative effects when adding 25%, 50% calcium carbide slag, and sintered red mud. However, adjusting the content of calcium carbide slag and sintered red mud was beneficial to improve the peak load displacement, slope, and elastic and plastic energy of mortar.
- (2)
- Carbonization curing and the addition of calcium carbide slag and sintered red mud could inhibit the shrinkage of mortar. With an increase in the content of calcium carbide slag and sintered red mud, the inhibition of carbonation curing age on shrinkage was more prominent, and an even swelling phenomenon appeared and reached the maximum of 17.33 μm/m. However, the addition of calcium carbide slag and sintered red mud increased the water absorption of mortar, and the maximum increase was 6.37% at 28 days.
- (3)
- After carbonization curing for 28 days, the content of CH and CSH in cement paste reduced to 3.60% and 2.30%, respectively. Therefore, carbonation curing could promote the hydration reaction and consume CH formed by hydration to form calcium carbonate. A similar rule still existed even if the mixing amount and composition ratio of calcium carbide slag and sintered red mud were adjusted.
- (4)
- Adjusting the content of calcium carbide slag and sintered red mud could increase the adsorption of carbon dioxide, the content of calcium carbonate, and the degree of carbonization. When the dosage was 50%, the carbon dioxide adsorption capacity, calcium carbonate content, and carbonization degree of calcium carbide slag mortar were higher than those of sintered red mud mortar, which increased by 29.56%, 102.73%, and 28.84%, respectively. Even if calcium carbide slag was compounded with sintered red mud, the superposition effect was not fully exerted, and the indexes such as carbon dioxide adsorption capacity, calcium carbonate content, and carbonization degree were still lower than those of carbide slag mortar. However, calcium carbide slag and sintered red mud still showed superior carbon sequestration capacity, which was higher than fly ash and Bayer red mud.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Guo, A. Application of Green Building Materials and Multi-objective Energy-Saving Optimization. Int. J. Heat Technol. 2021, 39, 299–308. [Google Scholar] [CrossRef]
- Dong, S.; Yu, S.; Chen, L.; Zhuo, Q.; Wu, F.; Xie, L.; Liu, L. Effects of pretreated phosphogypsum and granulated blast-furnace slag on the rheological properties of the paste excited by NaOH. Molecules 2023, 28, 2662. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Reiner, D.M.; Yang, F.; Cui, C.; Meng, J.; Shan, Y.; Liu, Y.; Tao, S.; Guan, D. Projecting future carbon emissions from cement production in developing countries. Nat. Commun. 2023, 14, 8213. [Google Scholar] [CrossRef]
- Pang, H.; Wei, Q.; Xu, Y.; Zhang, Y.; Xu, D.; Liu, J.; He, J.; Lu, J. Two wastes into one resource: Carbide slag-driven anaerobic fermentation of excess sludge towards short-chain fatty acids recovery. Chem. Eng. J. 2024, 479, 147814. [Google Scholar] [CrossRef]
- Dong, S.; Zhuo, Q.; Chen, L.; Wu, F.; Xie, L. Reuse of pretreated red mud and phosphogypsum as supplementary cementitious material. Sustainability 2023, 15, 2856. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, T.; Zhang, J.; Wang, Z.; Liu, J.; Cao, J.; Wang, C. Recycling and utilization of calcium carbide slag—Current status and new opportunities. Renew. Sustain. Energy Rev. 2022, 15, 112133. [Google Scholar] [CrossRef]
- Altiner, M. Use of taguchi approach for synthesis of calcite particles from calcium carbide slag for CO2 fixation by accelerated mineral carbonation. Arab. J. Chem. 2019, 12, 531–540. [Google Scholar] [CrossRef]
- Li, M.; Tan, H.; Zhang, J.; XDeng Kong, X.; Chen, P.; Jian, S.; He, X.; Yang, J. Enhancement in compressive strength of carbide slag activated ground granulated blast furnace slag by introducing CaCl2 and NaCl. Constr. Build. Mater. 2023, 385, 131071. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Q.; Zeng, L.; Ding, W. Preparation of calcium carbonate with microstructure and nanostructure from carbide slag for CO2 sequestration by using recyclable ammonium chloride. Particuology 2024, 90, 1–9. [Google Scholar] [CrossRef]
- Zhang, H.; He, Y.; Wang, C.; Guan, Y.; Ge, Z.; Sun, R.; Ling, Y.; Savija, B. Statistical mixture design for carbide residue activated blast furnace slag foamed lightweight concrete. Constr. Build. Mater. 2022, 342, 127840. [Google Scholar] [CrossRef]
- Feng, Y.; Du, Y.; Zhou, A.; Zhang, M.; Li, J.; Zhou, S.; Xia, W. Geoenvironmental properties of industrially contaminated site soil solidified/stabilized with a sustainable by-product-based binder. Sci. Total Environ. 2021, 765, 142778. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Han, C.; Liu, Y.; Yan, X.; Dong, S.; Ma, L.; Dai, Q.; Huang, B.; Sun, M.; Yin, X.; et al. CO2 capture by the slag from lignite’s chemical looping gasification using carbide slag. Energy 2024, 301, 131681. [Google Scholar] [CrossRef]
- Zhang, T.; Chu, G.; Lyu, J.; Cao, Y.; Xu, W.; Ma, K.; Song, L.; Yue, H.; Liang, B. CO2 mineralization of carbide slag for the production of light calcium carbonates. Chin. J. Chem. Eng. 2022, 43, 86–98. [Google Scholar] [CrossRef]
- Jiang, Q.; He, Y.M.; Wu, Y.L.; Dian, B.; Zhang, J.L.; Li, T.G.; Jiang, M. Solidification/stabilization of soil heavy metals by alkaline industrial wastes: A critical review. Environ. Pollut. 2022, 31, 120094. [Google Scholar] [CrossRef]
- Hao, C.; Deng, M.; Mo, L.; Liu, K. Surface modification of fly ashes with carbide slag and its effect on compressive strength and autogenous shrinkage of blended cement pastes. J. Wuhan Univ. Technol.—Mater. Sci. Ed. 2012, 27, 1149–1153. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Phoo-ngernkham, T.; Li Ly Damrongwiriyanupap, N.; Chindaprasirt, P. Strength development and durability of alkali-activated fly ash mortar with calcium carbide residue as additive. Constr. Build. Mater. 2018, 162, 714–723. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; He, X.; Su, Y.; Miao, W.; Strnadel, B.; Huang, X. Hydration and rheology of activated ultra-fine ground granulated blast furnace slag with carbide slag and anhydrous phosphogypsum. Cem. Concr. Compos. 2022, 133, 104727. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, F.; Dong, S.; Zhang, Q.; Huang, C.; Chen, L. A low-carbon composite cementitious material manufactured by a combined process of red mud. Buildings 2024, 14, 1729. [Google Scholar] [CrossRef]
- Lyu, Z.; Li, Y.; Fan, M.; Huang, Y.; Li, C. Analysis of calcined red mud properties and related mortar performances. Fluid Dyn. Mater. Process. 2024, 20, 901–913. [Google Scholar] [CrossRef]
- Sun, Y.F.; Dong, F.Z.; Liu, J.T. Technology for recovering iron from red mud by Bayer process. Metrop. Mine 2009, 9, 176–178. [Google Scholar]
- Zheng, X.F. Recycling technology of aluminum and sodium from low temperature bayer progress red mud. Shandong Metall. 2010, 32, 16–17. [Google Scholar]
- Chen, X.H.; Chen, Y.; Gan, M.; Xu, K.X. Precipitation and separation of vanadium from bayer process sodium aluminate solution. Chin. J. Process Eng. 2010, 10, 24–38. [Google Scholar]
- Pei, J.; Pan, X.; Zhang, Y.; Yu, H.; Tu, G. A novel process to fully utilize red mud based on low-calcium sintering. J. Environ. Chem. Eng. 2021, 9, 106754. [Google Scholar] [CrossRef]
- Vangelatos, I.; Angelopoulos, G.N.; Boufounos, D. Utilization of ferroalumina as raw material in the production of Ordinary Portland Cement. J. Hazard. Mater. 2009, 168, 473–478. [Google Scholar] [CrossRef]
- Shao, L.; Wei, G.; Wang, Y.; Li, Z.; Zhang, L.; Zhao, S.; Zhou, M. Preparation and application of acidified/calcined red mud catalyst for catalytic degradation of butyl xanthate in Fenton-like process. Environ. Sci. Pollut. Res. 2016, 23, 15202–15207. [Google Scholar] [CrossRef]
- Vaclavikova, M.; Misaelides, P.; Gallios, G.; Jakabsky, S.; Hredzak, S. Removal of cadmium, zinc, copper and lead by red mud, an iron oxides containing hydrometallurgical waste. Stud. Surf. Sci. Catal. 2005, 155, 517–525. [Google Scholar]
- Ciccu, R.; Ghiani, M.; Serci, A.; Fadda, S.; Peretti, R.; Zucca, A. Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Miner. Eng. 2003, 16, 187–192. [Google Scholar] [CrossRef]
- Lu, G.Z.; Zhang, T.A.; Bao, L.; Dou, Z.H.; Zhang, W.G. Roasting pretreatment of high-sulfur bauxite. Chin. J. Process Eng. 2008, 8, 892–896. [Google Scholar]
- Samal, S.; Ray, A.K.; Bandopadhyay, A. Proposal for resources, utilization, and processes of red mud in India-a review. Int. J. Miner. Process 2013, 118, 43–55. [Google Scholar] [CrossRef]
- Babisk, M.P.; Amaral, L.F.; Ribeiro, L.S.; Vieira CM, F.; Prado, U.S.; Gadioli MC, B.; Oliveira, M.S.; Luz, F.S.; Monteiro, S.N.; Filho, F.C.G. Evaluation and application of sintered red mud and its incorporated clay ceramics as materials for building construction. J. Mater. Res. Technol. 2020, 9, 2186–2195. [Google Scholar] [CrossRef]
- Alams, S.; Das, S.K.; Rao, B.H. Characterization of coarse fraction of red mud as a civil engineering construction material. J. Clean. Prod. 2017, 168, 679–691. [Google Scholar] [CrossRef]
- Ribeiro, L.S.; Babisk, M.P.; Prado, U.S.; Monteiro, S.N.; Vieira, C.M.F. Incorporation of in natura and calcined red muds into clau ceramic. Mater. Res. 2015, 18, 279–282. [Google Scholar] [CrossRef]
- Zhang, D.; Ghouleh, Z.; Shao, Y. Review on carbonation curing of cement-based materials. J. CO2 Util. 2017, 21, 119–131. [Google Scholar] [CrossRef]
- Zhang, D.; Ellis, B.R.; Jaworska, B.; Hu, W.H.; Li, V.C. Carbonation curing for precast Engineered Cementitious Composites. Constr. Build. Mater. 2021, 313, 125502. [Google Scholar] [CrossRef]
- Chen, T.; Bai, M.; Gao, X. Carbonation curing of cement mortars incorporating carbonated fly ash for performance improvement and CO2 sequestration. J. CO2 Util. 2021, 51, 101633. [Google Scholar] [CrossRef]
- Wang, X.; Zhan, Q.; Zhang, X.; Su, Y.; Zhou, J. Study on improving the carbon sequestration properties of sintered red mud by regulating pressure. J. Build. Eng. 2024, 84, 108518. [Google Scholar] [CrossRef]
- GB175-2023; Common Portland Cement. China Standard Press: Beijing, China, 2023.
- Song, B.; Hu, X.; Liu, S.; Shi, C. Chloride binding of early CO2-cured Portland cement-fly ash-GGBS ternary pastes. Cem. Concr. Compos. 2022, 134, 104793. [Google Scholar] [CrossRef]
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). China Standard Press: Beijing, China, 2021.
- Zhang, Q.; Dong, S.; Wu, F.; Cai, Y.; Xie, L.; Huang, C.; Zhao, J.; Yang, S.; Xu, F.; Zhu, Z.; et al. Investigation of the macro performance and mechanism of biochar modified ultra-high performance concrete. Case Stud. Constr. Mater. 2024, 21, 3595. [Google Scholar] [CrossRef]
- Gupta, S.; Kashani, A.; Mahmood, A.H.; Han, T. Carbon sequestration in cementitious composites using biochar and fly ash–Effect on mechanical and durability properties. Constr. Build. Mater. 2021, 291, 123363. [Google Scholar] [CrossRef]
- Yu, H.; Tang, C.; Mehdizadeh, H.; Guo, M.Z.; Ling, T.C. Effects of early hydration of alite and belite phases on subsequent accelerated carbonation. Constr. Build. Mater. 2024, 411, 134675. [Google Scholar] [CrossRef]
- Li, X.; Ling, T.C. Instant CO2 curing for dry-mix pressed cement samples: Consideration of CO2 concentrations coupled with further water curing. J. CO2 Util. 2020, 38, 348–354. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, H.; Li, J.; Tao, F.; Li, C.; Qian, B.; Jiang, P.; Jian, P. Influence of carbonization process on the mechanical properties of Nano-MgO modified cement soil. Sustainability 2021, 13, 3558. [Google Scholar] [CrossRef]
- Anjaneya, D.; Verma, A.; Pang, S.D. Dual waste utilization in ultra-high performance concrete using biochar and marine clay. Cem. Concr. Compos. 2021, 120, 104049. [Google Scholar]
- Norman, M.D.A.; Ferreira, S.A.; Jowett, G.M.; Bozec, L.; Gentleman, E. Measuring the elastic modulus of soft culture surfaces and three-dimensional hydrogels using atomic force microscopy. Nat. Protoc. 2021, 16, 2418–2449. [Google Scholar] [CrossRef]
- Christopher, S.; Rostislav, C.; Chao, J.; Josef, H. Experimental investigations on early crack development in fully restrained reinforced concrete members with active zero-displacement control. Mater. Struct. 2023, 56, 115. [Google Scholar]
- Revathy, T.D.R.; Palanivelu, K.; Ramachandran, A. Sequestration of carbon dioxide by red mud through direct mineral carbonation at room temperature. Glob. Warm. 2017, 11, 23–27. [Google Scholar] [CrossRef]
- Bonenfant, D.; Kharoune, L.; Sauve, S.; Hausler, R.; Niquette, P.; Mimeault, M.; Kharoune, M. CO2 sequestration by aqueous red mud carbonation at ambient pressure and temperature. Eng. Chem. Res. 2008, 47, 7617–7622. [Google Scholar] [CrossRef]
- Yadav, V.S.; Prasad, M.; Khan, J.; Amritphale, S.S.; Singh, M.; Raju, C.B. Sequestration of carbon dioxide (CO2) using red mud. Hazard. Mater. 2010, 176, 1044–1050. [Google Scholar] [CrossRef]
- Sahu, R.C.; Patel, R.K.; Ray, B.C. Neutralization of red mud using CO2 sequestration Cycle. Hazard. Mater. 2010, 179, 28–34. [Google Scholar] [CrossRef]
- Ho, H.J.; Lizuka, A.; Shibata, E. Utilization of low-calcium fly ash via direct aqueous carbonation with a low-energy input: Determination of carbonation reaction and evaluation of the potential for CO2 sequestration and utilization. Environ. Manag. 2021, 288, 112411. [Google Scholar] [CrossRef]
- Ukwattage, N.L.; Ranjith, P.G.; Wang, S.H. Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation. Energy 2013, 52, 230–236. [Google Scholar] [CrossRef]
- Montes-Hernandez, G.; Perez-Lopez, R.; Renard, F.; Nieto, J.M.; Charlet, L. Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly ash. Hazard. Mater. 2009, 161, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Uliasz-Bochenczyk, A.; EMokrzycki Piotrowski, Z. Estimation of CO2 sequestration potential via mineral carbonation in fly ash from lignite combustion in Poland. Energy Proc. 2009, 1, 4873–4879. [Google Scholar] [CrossRef]
- He, L.L.; Yu, D.X.; Lv, W.Z.; Wu, J.Q.; Xu, M.H. A novel method for CO2 sequestration via indirect carbonation of coal fly ash. Eng. Chem. Res. 2013, 52, 15138–15145. [Google Scholar] [CrossRef]
Name | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | TiO2 | Na2O | K2O | Others |
---|---|---|---|---|---|---|---|---|---|---|
OPC/wt.% | 21.58 | 6.78 | 4.77 | 60.54 | 2.81 | 2.36 | 0 | 0.12 | 0.21 | 0.83 |
CCS/wt.% | 1.55 | 1.96 | 0.48 | 67.87 | 0 | 0.31 | 0 | 2.52 | 1.88 | 23.43 |
SRM/wt.% | 23.43 | 6.42 | 9.37 | 48.39 | 1.97 | 0.11 | 3.45 | 1.63 | 2.05 | 3.18 |
No. | OPC | CCS | SRM | Water | Sand |
---|---|---|---|---|---|
CR 0 | 450 | 0 | 0 | 180 | 450 |
CR 1 | 225 | 0 | 225 | 180 | 450 |
CR 2 | 225 | 225 | 0 | 180 | 450 |
CR 3 | 337.5 | 0 | 112.5 | 180 | 450 |
CR 4 | 337.5 | 112.5 | 0 | 180 | 450 |
CR 5 | 299.7 | 75.15 | 75.15 | 180 | 450 |
CR 6 | 225 | 112.5 | 112.5 | 180 | 450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Yang, B.; Luo, P.; Dong, S.; Wang, H.; Zhang, Q.; Huang, Z.; Jiang, J.; Cai, Y.; Yang, S.; et al. Improving the Performance of Mortar under Carbonization Curing by Adjusting the Composition of Ternary Binders. Materials 2024, 17, 5037. https://doi.org/10.3390/ma17205037
Wu F, Yang B, Luo P, Dong S, Wang H, Zhang Q, Huang Z, Jiang J, Cai Y, Yang S, et al. Improving the Performance of Mortar under Carbonization Curing by Adjusting the Composition of Ternary Binders. Materials. 2024; 17(20):5037. https://doi.org/10.3390/ma17205037
Chicago/Turabian StyleWu, Fufei, Bumeng Yang, Pengfei Luo, Shuangkuai Dong, Hongying Wang, Qiuyue Zhang, Zonghui Huang, Jun Jiang, Yang Cai, Shan Yang, and et al. 2024. "Improving the Performance of Mortar under Carbonization Curing by Adjusting the Composition of Ternary Binders" Materials 17, no. 20: 5037. https://doi.org/10.3390/ma17205037
APA StyleWu, F., Yang, B., Luo, P., Dong, S., Wang, H., Zhang, Q., Huang, Z., Jiang, J., Cai, Y., Yang, S., & Xu, F. (2024). Improving the Performance of Mortar under Carbonization Curing by Adjusting the Composition of Ternary Binders. Materials, 17(20), 5037. https://doi.org/10.3390/ma17205037