Modeling Temperature-Dependent Photoluminescence Dynamics of Colloidal CdS Quantum Dots Using Long Short-Term Memory (LSTM) Networks
Abstract
:1. Introduction
1.1. Synthesis and Investigation of Properties of CdS QDs
1.2. Challenges in Modeling Temperature-Dependent PL
1.3. Aim of This Study
2. Materials and Methods
2.1. Experimental Setup
2.2. Morphology and Optical Properties
2.3. Data Processing
2.4. Optimization of LSTM Hyperparameters Using PSO
2.4.1. LSTM Model
- Memory Cell: The heart of an LSTM unit is the memory cell, which can store information over long periods. This allows the network to retain past information that might be crucial for making predictions about future data points.
- Gating Mechanisms: LSTM networks utilize three types of gates to regulate the flow of information into and out of the memory cell:
- Input Gate (): This gate determines how much of the new information from the current input should be stored in the memory cell. It is controlled by a sigmoid activation function that produces values between 0 and 1, which helps to scale the input values.
- Forget Gate (): This gate decides what information from the memory cell should be discarded or retained. Similar to the input gate, it uses a sigmoid activation function to produce a value between 0 and 1 for each component of the memory cell, allowing the network to “forget” less relevant data.
- Output Gate (): This gate controls how much of the information in the memory cell is sent to the output of the LSTM unit, which important for making predictions based on the internal state of the network.
- is the input vector at time step t.
- is the hidden state from the previous time step .
- , , and are weight matrices associated with the input, forget, and output gates, respectively.
- , , and are bias vectors for the input, forget, and output gates, respectively.
- is the sigmoid activation function, which maps the input to a value between 0 and 1, thereby controlling the gate’s activation.
- ⊙ denotes element-wise (Hadamard) multiplication.
- is the candidate cell state, which is computed as:
2.4.2. PSO-Based Hyperparameters Tuning
- is the inertia weight, controlling the influence of the previous velocity on the current velocity. It helps balance exploration (searching new areas) and exploitation (refining known good areas).
- is the cognitive coefficient, representing the particle’s tendency to return to its own best position found so far.
- is the social coefficient, representing the particle’s tendency to move toward the global best position found by the entire swarm.
- and are random numbers uniformly distributed in the interval , which introduce stochastic behavior to the particle’s movement.
- The number of LSTM units per layer units.
- The number of training epochs epochs.
- The batch size used during training.
- Each particle’s position (set of hyperparameters ) is evaluated using the MSE objective function.
- The personal best position and global best position are updated if the current position yields a lower MSE.
- The particles’ velocities and positions are updated based on the equations provided above.
3. Results
3.1. Temperature Dependencies
3.2. LSTM Results
4. Discussion
4.1. Advantages and Limitations of Proposed Approach
4.2. Future Directions
5. Conclusions
- Researchers may explore the application of LSTM models to other low-dimensional materials, such as perovskites, transition metal dichalcogenides (TMDs), and organic semiconductors. This expansion will validate the generalizability of LSTM techniques across diverse material systems and enable comparative studies to enhance the understanding of PL dynamics.
- Future studies could incorporate additional experimental variables, such as temperature, excitation wavelength, and environmental conditions, to further refine LSTM predictions. The inclusion of these factors can provide a more comprehensive view of the conditions affecting PL behavior and optimize device performance.
- The integration of LSTM with other analytical techniques, such as machine learning methods and experimental diagnostics (e.g., time-resolved spectroscopy), may yield a more holistic approach to understanding PL dynamics. This combination can facilitate the development of predictive models that not only forecast PL behavior but also provide insights into underlying physical mechanisms.
- Given the identified influence of trap states on PL behavior, future research should aim to investigate methods for reducing defect densities through advanced synthesis techniques or post-synthesis treatments. By mitigating trap states, researchers can enhance the efficiency of optoelectronic devices.
- Developing real-time monitoring systems based on LSTM predictions can assist in the optimization of QD synthesis and processing conditions, allowing for in situ adjustments to improve PL performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maity, P.; Kumar, S.; Kumar, R.; Jha, S.; Bhattacharyya, D.; Barman, S.; Chatterjee, S.; Pal, B.N.; Ghosh, A.K. Role of cobalt doping in CdS quantum dots for potential application in thin film optoelectronic devices. J. Phys. Chem. C 2021, 125, 2074–2088. [Google Scholar] [CrossRef]
- Bastami, N.; Soheyli, E.; Arslan, A.; Sahraei, R.; Yazici, A.F.; Mutlugun, E. Nanowire-Shaped MoS2@MoO3 Nanocomposites as a Hole Injection Layer for Quantum Dot Light-Emitting Diodes. ACS Appl. Electron. Mater. 2022, 4, 3849–3859. [Google Scholar] [CrossRef]
- Vashchenko, A.; Osadchenko, A.; Selyukov, A.; Ambrozevich, S.; Zakharchuk, I.; Daibagya, D.; Shliakhtun, O.; Volodin, N.Y.; Cheptsov, D.; Dolotov, S.; et al. Electroluminescence of coumarin-based dyes. Bull. Lebedev Phys. Inst. 2022, 49, 74–77. [Google Scholar] [CrossRef]
- Corrêa Santos, D.; Vieira Marques, M.d.F. Blue light polymeric emitters for the development of OLED devices. J. Mater. Sci. Mater. Electron. 2022, 33, 12529–12565. [Google Scholar] [CrossRef]
- Ho, C.L.; Li, H.; Wong, W.Y. Red to near-infrared organometallic phosphorescent dyes for OLED applications. J. Organomet. Chem. 2014, 751, 261–285. [Google Scholar] [CrossRef]
- Shivaji, K.; Mani, S.; Ponmurugan, P.; De Castro, C.S.; Lloyd Davies, M.; Balasubramanian, M.G.; Pitchaimuthu, S. Green-synthesis-derived CdS quantum dots using tea leaf extract: Antimicrobial, bioimaging, and therapeutic applications in lung cancer cells. ACS Appl. Nano Mater. 2018, 1, 1683–1693. [Google Scholar] [CrossRef]
- Soheyli, E.; Ghaemi, B.; Sahraei, R.; Sabzevari, Z.; Kharrazi, S.; Amani, A. Colloidal synthesis of tunably luminescent AgInS-based/ZnS core/shell quantum dots as biocompatible nano-probe for high-contrast fluorescence bioimaging. Mater. Sci. Eng. C 2020, 111, 110807. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, T.; McCormick, P.G. Synthesis of CdS quantum dots by mechanochemical reaction. Appl. Phys. A Mater. Sci. Process. 1997, 65. [Google Scholar] [CrossRef]
- Chen, Y.; Rosenzweig, Z. Luminescent CdS quantum dots as selective ion probes. Anal. Chem. 2002, 74, 5132–5138. [Google Scholar] [CrossRef]
- Kim, D.; Mishima, T.; Tomihira, K.; Nakayama, M. Temperature dependence of photoluminescence dynamics in colloidal CdS quantum dots. J. Phys. Chem. C 2008, 112, 10668–10673. [Google Scholar] [CrossRef]
- Kim, J.I.; Kim, J.; Lee, J.; Jung, D.R.; Kim, H.; Choi, H.; Lee, S.; Byun, S.; Kang, S.; Park, B. Photoluminescence enhancement in CdS quantum dots by thermal annealing. Nanoscale Res. Lett. 2012, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, H.; Pathak, S.S.; Dasgupta, S.; Panchakarla, L.S.; Nath, S.; Datta, A. Exciton Dynamics in Colloidal CdS Quantum Dots with Intense and Stokes Shifted Photoluminescence in a Single Decay Channel. J. Phys. Chem. Lett. 2022, 13, 6770–6776. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zheng, A.; Gao, Y.; He, C.; Wu, G.; Chen, Y.; Kai, X.; Zhu, C. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution. Spectrochim. Acta Part Mol. Biomol. Spectrosc. 2008, 69, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Biswas, B. Study of Photophysical Properties of Thiol-capped CdS Quantum Dots Doped with Gold Nanoparticles. J. Fluoresc. 2024, 34, 523–530. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, F.; Yin, S.; Wang, Y.; Lin, Z.; Wu, X.; Zhao, Y. Correlation between the photoluminescence and oriented attachment growth mechanism of CdS quantum dots. J. Am. Chem. Soc. 2010, 132, 9528–9530. [Google Scholar] [CrossRef]
- Li, J.; Zheng, H.; Zheng, Z.; Rong, H.; Zeng, Z.; Zeng, H. Synthesis of CdSe and CdSe/ZnS quantum dots with tunable crystal structure and photoluminescent properties. Nanomaterials 2022, 12, 2969. [Google Scholar] [CrossRef]
- Knüsel, P.N.; Riedinger, A.; Rossinelli, A.A.; Ott, F.D.; Mule, A.S.; Norris, D.J. Experimental Evidence for Two-Dimensional Ostwald Ripening in Semiconductor Nanoplatelets. Chem. Mater. 2020, 32, 3312–3319. [Google Scholar] [CrossRef]
- Fang, D.; Zhang, Z.; Wang, Z.; Ding, Z. Study of photoluminescence of CdS/ZnS core/shell quantum dots. Phys. Procedia 2012, 32, 920–925. [Google Scholar] [CrossRef]
- Manjunatha, C.; Krishna, R.H.; Ashoka, S. Green synthesis of inorganic nanoparticles using microemulsion methods. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 41–67. [Google Scholar]
- Mohammed, I.M.; Gubari, G.M.; Huse, N.P.; Dive, A.S.; Han, S.H.; Sharma, R. Effect of Cd/S ratio on growth and physical properties of CdS thin films for photosensor application. J. Mater. Sci. Mater. Electron. 2020, 31, 9989–9996. [Google Scholar] [CrossRef]
- Hou, X.; Qin, H.; Peng, X. Enhancing dielectric screening for auger suppression in CdSe/CdS quantum dots by epitaxial growth of ZnS shell. Nano Lett. 2021, 21, 3871–3878. [Google Scholar] [CrossRef]
- Mehata, M.S. Enhancement of charge transfer and quenching of photoluminescence of capped CdS quantum dots. Sci. Rep. 2015, 5, 12056. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Zeng, M.; Zhang, Z.; Bai, Y.; Xing, G.; Cheng, H.M.; Lin, Y. Exciton diffusion and dissociation in organic and quantum-dot solar cells. Smartmat 2023, 4, e1176. [Google Scholar] [CrossRef]
- Martynenko, I.V.; Baimuratov, A.S.; Osipova, V.A.; Kuznetsova, V.A.; Purcell-Milton, F.; Rukhlenko, I.D.; Fedorov, A.V.; Gun’ko, Y.K.; Resch-Genger, U.; Baranov, A.V. Excitation energy dependence of the photoluminescence quantum yield of core/shell CdSe/CdS quantum dots and correlation with circular dichroism. Chem. Mater. 2018, 30, 465–471. [Google Scholar] [CrossRef]
- Farahmandzadeh, F.; Molaei, M.; Alehdaghi, H.; Karimipour, M. The significant increasing photoluminescence quantum yield of the CdTe/CdS/ZnS core/multi-shell quantum dots (QDs) by 60Co gamma irradiation. Appl. Phys. A 2022, 128, 239. [Google Scholar] [CrossRef]
- Joh, Y.A.; Kwon, Y.H.; Tannir, S.; Leonard, B.M.; Kubelka, J.; Varga, K.; Balaz, M. The effect of molecular isomerism on the induced circular dichroism of cadmium sulfide quantum dots. J. Mater. Chem. C 2021, 9, 17483–17495. [Google Scholar] [CrossRef]
- Smirnov, M.S. Temperature features of non-radiative energy transfer in hybrid associates of CdS/TGA quantum dots with methylene blue molecules. J. Nanoparticle Res. 2020, 22, 1–10. [Google Scholar] [CrossRef]
- Noblet, T.; Hottechamps, J.; Erard, M.; Dreesen, L. Homogeneous Resonant Energy Transfer within Clusters of Monodisperse Colloidal Quantum Dots. J. Phys. Chem. C 2022, 126, 15309–15318. [Google Scholar] [CrossRef]
- Smirnov, M.; Buganov, O.; Tikhomirov, S.; Ovchinnikov, O. Femtosecond dynamics of photoexcitation in hybrid systems of CdS quantum dots with methylene blue. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 118, 113898. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, S.; Qin, H.; Zhou, J.; Peng, X. Oxygen stabilizes photoluminescence of CdSe/CdS core/shell quantum dots via deionization. J. Am. Chem. Soc. 2020, 142, 4254–4264. [Google Scholar] [CrossRef]
- Sun, H.; Cao, Z.; Qin, H.; Peng, X.; Su, B. Ligand-controlled electrochemiluminescence generation from CdSe/CdS/ZnS core/shell/shell quantum dots. Nano Res. 2024, 17, 7776–7785. [Google Scholar] [CrossRef]
- Li, S.; Muche, S.; Xu, M.; Deng, Y.; Tremblay, P.L.; Zhang, T. Hydrogen evolution from visible light by CdS nanocrystals made of 0D quantum dots on 1D nanorods. J. Phys. Chem. Solids 2022, 171, 110989. [Google Scholar] [CrossRef]
- Devadoss, I.; Sakthivel, P.; Krishnamoorthy, A. Band gap tailoring and photoluminescence performance of Cds quantum dots for white LED applications: Influence of Ba2+ and Zn2+ ions. J. Mater. Sci. Mater. Electron. 2021, 32, 5729–5737. [Google Scholar] [CrossRef]
- Kuznetsova, Y.V.; Popov, I.D.; Gerasimov, E.Y.; Rempel, A.A. Cadmium sulfide quantum dots in water media: Enhanced photoluminescence, dispersion and stability. J. Mol. Liq. 2023, 371, 121084. [Google Scholar] [CrossRef]
- Qi, X.; Hu, Y.; Chen, Y.; Zhang, J.; Fang, D.; Wang, J.; Fang, D.; Jin, T. Preparation of water-soluble cadmium sulfide quantum dots with narrow small-size distribution by controlling hydrodynamic cavitation device parameters. Powder Technol. 2024, 440, 119755. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Zhang, M.; Rowell, N.; Zhang, C.; Wang, S.; Lu, J.; Fan, H.; Huang, W.; Chen, X.; et al. Fragmentation of Magic-Size Cluster Precursor Compounds into Ultrasmall CdS Quantum Dots with Enhanced Particle Yield at Low Temperatures. Angew. Chem. 2020, 132, 12111–12119. [Google Scholar] [CrossRef]
- Radchanka, A.; Hrybouskaya, V.; Iodchik, A.; Achtstein, A.W.; Artemyev, M. Zeta potential-based control of CdSe/ZnS quantum dot photoluminescence. J. Phys. Chem. Lett. 2022, 13, 4912–4917. [Google Scholar] [CrossRef]
- Sonker, R.K.; Shastri, R.; Johari, R. Superficial synthesis of CdS quantum dots for an efficient perovskite-sensitized solar cell. Energy Fuels 2021, 35, 8430–8435. [Google Scholar] [CrossRef]
- Widness, J.K.; Enny, D.G.; McFarlane-Connelly, K.S.; Miedenbauer, M.T.; Krauss, T.D.; Weix, D.J. CdS quantum dots as potent photoreductants for organic chemistry enabled by auger processes. J. Am. Chem. Soc. 2022, 144, 12229–12246. [Google Scholar] [CrossRef]
- Fu, X.; Weber, K.J.; White, T.P. Characterization of trap states in perovskite films by simultaneous fitting of steady-state and transient photoluminescence measurements. J. Appl. Phys. 2018, 124, 073102. [Google Scholar] [CrossRef]
- Yuan, Y.; Yan, G.; Dreessen, C.; Rudolph, T.; Hülsbeck, M.; Klingebiel, B.; Ye, J.; Rau, U.; Kirchartz, T. Shallow defects and variable photoluminescence decay times up to 280 μs in triple-cation perovskites. Nat. Mater. 2024, 23, 391–397. [Google Scholar] [CrossRef]
- Zhang, X.; Bi, S.; Zhou, J.; You, S.; Zhou, H.; Zhang, Y.; Tang, Z. Temperature-dependent charge transport in solution-processed perovskite solar cells with tunable trap concentration and charge recombination. J. Mater. Chem. C 2017, 5, 9376–9382. [Google Scholar] [CrossRef]
- Li, C. Spectroscopic Investigation of Charge Carrier Dynamics in Carbon Nitride Photocatalysts. Ph.D. Thesis, Friedrich-Schiller-Universität, Jena, Germany, 2022. [Google Scholar]
- Gamanayake, C.; Qin, Y.; Yuen, C.; Jayasinghe, L.; Tan, D.E.; Low, J. A hybrid deep learning model-based remaining useful life estimation for reed relay with degradation pattern clustering. IEEE Trans. Ind. Inform. 2022, 19, 7401–7413. [Google Scholar] [CrossRef]
- Ovchinnikov, O.; Smirnov, M.; Korolev, N.; Golovinski, P.; Vitukhnovsky, A. The size dependence recombination luminescence of hydrophilic colloidal CdS quantum dots in gelatin. J. Lumin. 2016, 179, 413–419. [Google Scholar] [CrossRef]
- Smirnov, M.; Buganov, O.; Shabunya-Klyachkovskaya, E.; Tikhomirov, S.; Ovchinnikov, O.; Vitukhnovsky, A.; Perepelitsa, A.; Matsukovich, A.; Katsaba, A. Dynamics of electronic excitations relaxation in hydrophilic colloidal CdS quantum dots in gelatin with involvement of localized states. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 84, 511–518. [Google Scholar] [CrossRef]
- Kondratenko, T.S.; Smirnov, M.S.; Ovchinnikov, O.V.; Shabunya-Klyachkovskaya, E.V.; Matsukovich, A.S.; Zvyagin, A.I.; Vinokur, Y.A. Size-dependent optical properties of colloidal CdS quantum dots passivated by thioglycolic acid. Semiconductors 2018, 52, 1137–1144. [Google Scholar] [CrossRef]
- Daibagya, D.; Zakharchuk, I.; Osadchenko, A.; Selyukov, A.; Ambrozevich, S.; Skorikov, M.; Vasiliev, R. Luminescence and colorimetric properties of ultrathin cadmium selenide nanoscrolls. Bull. Lebedev Phys. Inst. 2023, 50, 510–514. [Google Scholar] [CrossRef]
- Daibagya, D.; Ambrozevich, S.; Zakharchuk, I.; Osadchenko, A.; Smirnov, M.; Ovchinnikov, O.; Selyukov, A. Emission behaviour of CdTe/SiO2 core/shell quantum dots in external electric field. Opt. Mater. 2024, 150, 115297. [Google Scholar] [CrossRef]
- Kayanuma, Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B 1988, 38, 9797. [Google Scholar] [CrossRef]
- Wang, Y.; Herron, N. Quantum size effects on the exciton energy of CdS clusters. Phys. Rev. B 1990, 42, 7253. [Google Scholar] [CrossRef]
- Yu, Y.M.; Kim, K.M.; Lee, K.S.; Choi, Y.D.; Yu, P.Y. Band gap energy and exciton peak of cubic CdS/GaAs epilayers. J. Appl. Phys. 2002, 92, 1162–1164. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Y.; Liao, C.; Guo, Y.; Lu, Y.; Xia, Y.; Liu, Y. Temperature-dependent photoluminescence of CdS/ZnS core/shell quantum dots for temperature sensors. Sensors 2022, 22, 8993. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.B.; Titova, L.; Jackson, H.; Smith, L.; Yarrison-Rice, J.; Lensch, J.; Lauhon, L. Temperature dependent photoluminescence of single CdS nanowires. Appl. Phys. Lett. 2006, 89, 123123. [Google Scholar] [CrossRef]
- Vainshtein, I.; Zatsepin, A.; Kortov, V. Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap. Phys. Solid State 1999, 41, 905–908. [Google Scholar] [CrossRef]
- Savchenko, S.; Vokhmintsev, A.; Weinstein, I. Temperature-induced shift of the exciton absorption band in InP/ZnS quantum dots. Opt. Mater. Express 2017, 7, 354–359. [Google Scholar] [CrossRef]
- Fan, H. Temperature dependence of the energy gap in semiconductors. Phys. Rev. 1951, 82, 900. [Google Scholar] [CrossRef]
- Achtstein, A.W.; Schliwa, A.; Prudnikau, A.; Hardzei, M.; Artemyev, M.V.; Thomsen, C.; Woggon, U. Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett. 2012, 12, 3151–3157. [Google Scholar] [CrossRef]
- Aven, M.; Prener, J.S. Physics and Chemistry of II-VI Compounds; North-Holland: Amsterdam, The Netherlands, 1967. [Google Scholar]
- Yang, X.; Zhou, Z.; Wang, Y.; Jiang, R.; Zheng, W.; Sun, C.Q. Raman spectroscopy determination of the Debye temperature and atomic cohesive energy of CdS, CdSe, Bi2Se3, and Sb2Te3 nanostructures. J. Appl. Phys. 2012, 112, 083508. [Google Scholar] [CrossRef]
- Ye, Z.; Lin, X.; Wang, N.; Zhou, J.; Zhu, M.; Qin, H.; Peng, X. Phonon-assisted up-conversion photoluminescence of quantum dots. Nat. Commun. 2021, 12, 4283. [Google Scholar] [CrossRef]
- Bose, S.; Shendre, S.; Song, Z.; Sharma, V.K.; Zhang, D.H.; Dang, C.; Fan, W.; Demir, H.V. Temperature-dependent optoelectronic properties of quasi-2D colloidal cadmium selenide nanoplatelets. Nanoscale 2017, 9, 6595–6605. [Google Scholar] [CrossRef]
- Rudin, S.; Reinecke, T.; Segall, B. Temperature-dependent exciton linewidths in semiconductors. Phys. Rev. B 1990, 42, 11218. [Google Scholar] [CrossRef]
- Klimov, V.; Bolivar, P.H.; Kurz, H. Ultrafast carrier dynamics in semiconductor quantum dots. Phys. Rev. B 1996, 53, 1463. [Google Scholar] [CrossRef] [PubMed]
- Valerini, D.; Creti, A.; Lomascolo, M.; Manna, L.; Cingolani, R.; Anni, M. Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 71, 235409. [Google Scholar] [CrossRef]
- Jing, P.; Zheng, J.; Ikezawa, M.; Liu, X.; Lv, S.; Kong, X.; Zhao, J.; Masumoto, Y. Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots. J. Phys. Chem. C 2009, 113, 13545–13550. [Google Scholar] [CrossRef]
- Katsaba, A.; Ambrozevich, S.; Vitukhnovsky, A.; Fedyanin, V.; Lobanov, A.; Krivobok, V.; Vasiliev, R.; Samatov, I. Surface states effect on photoluminescence of CdS colloidal nanocrystals. J. Appl. Phys. 2013, 113, 184306. [Google Scholar] [CrossRef]
- Ran, X.; Shan, Z.; Fang, Y.; Lin, C. An LSTM-based method with attention mechanism for travel time prediction. Sensors 2019, 19, 861. [Google Scholar] [CrossRef]
- Wan, X.; Li, Z.; Yu, W.; Wang, A.; Ke, X.; Guo, H.; Su, J.; Li, L.; Gui, Q.; Zhao, S.; et al. Machine learning paves the way for high entropy compounds exploration: Challenges, progress, and outlook. Adv. Mater. 2023, 1, 2305192. [Google Scholar] [CrossRef]
- Bian, L.; Qin, X.; Zhang, C.; Guo, P.; Wu, H. Application, interpretability and prediction of machine learning method combined with LSTM and LightGBM—A case study for runoff simulation in an arid area. J. Hydrol. 2023, 625, 130091. [Google Scholar] [CrossRef]
- Messner, W. From black box to clear box: A hypothesis testing framework for scalar regression problems using deep artificial neural networks. Appl. Soft Comput. 2023, 146, 110729. [Google Scholar] [CrossRef]
- Antwarg, L.; Miller, R.M.; Shapira, B.; Rokach, L. Explaining anomalies detected by autoencoders using Shapley Additive Explanations. Expert Syst. Appl. 2021, 186, 115736. [Google Scholar] [CrossRef]
- Nohara, Y.; Matsumoto, K.; Soejima, H.; Nakashima, N. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput. Methods Programs Biomed. 2022, 214, 106584. [Google Scholar] [CrossRef]
- Aba, Z.; Goktas, A.; Kilic, A. Characterization of Zn1−xLaxS thin films; compositional, surface, optical, and photoluminescence properties for possible optoelectronic and photocatalytic applications. J. Sol-Gel Sci. Technol. 2024, 109, 260–271. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Khadem, S.S.M.; Habibzadeh, S.; Esmaeili, A.; Abida, O.; Vatanpour, V.; Rabiee, N.; Bagherzadeh, M.; Iravani, S.; Saeb, M.R.; et al. Quantum dots for photocatalysis: Synthesis and environmental applications. Green Chem. 2021, 23, 4931–4954. [Google Scholar] [CrossRef]
- Abdellatif, A.A.; Younis, M.A.; Alsharidah, M.; Al Rugaie, O.; Tawfeek, H.M. Biomedical applications of quantum dots: Overview, challenges, and clinical potential. Int. J. Nanomed. 2022, 17, 1951–1970. [Google Scholar] [CrossRef] [PubMed]
- García de Arquer, F.P.; Talapin, D.V.; Klimov, V.I.; Arakawa, Y.; Bayer, M.; Sargent, E.H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Jin, Y.; Shi, L.; Zhou, R.; Zhou, Y.; An, D. Mechanisms behind excitation-and concentration-dependent multicolor photoluminescence in graphene quantum dots. Nanoscale 2020, 12, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Kargozar, S.; Hoseini, S.J.; Milan, P.B.; Hooshmand, S.; Kim, H.W.; Mozafari, M. Quantum dots: A review from concept to clinic. Biotechnol. J. 2020, 15, 2000117. [Google Scholar] [CrossRef]
- Sun, P.; Xing, Z.; Li, Z.; Zhou, W. Recent advances in quantum dots photocatalysts. Chem. Eng. J. 2023, 458, 141399. [Google Scholar] [CrossRef]
- Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.; Navruzyan, A.; Duffy, N.; et al. Evolving deep neural networks. In Artificial Intelligence in the Age of Neural Networks and Brain Computing; Elsevier: Amsterdam, The Netherlands, 2024; pp. 269–287. [Google Scholar]
- Malakouti, S.M.; Karimi, F.; Abdollahi, H.; Menhaj, M.B.; Suratgar, A.A.; Moradi, M.H. Advanced techniques for wind energy production forecasting: Leveraging multi-layer Perceptron+ Bayesian optimization, ensemble learning, and CNN-LSTM models. Case Stud. Chem. Environ. Eng. 2024, 10, 100881. [Google Scholar] [CrossRef]
- Raiaan, M.A.K.; Sakib, S.; Fahad, N.M.; Al Mamun, A.; Rahman, M.A.; Shatabda, S.; Mukta, M.S.H. A systematic review of hyperparameter optimization techniques in Convolutional Neural Networks. Decis. Anal. J. 2024, 11, 100470. [Google Scholar] [CrossRef]
- Talebi, K.; Torabi, Z.; Daneshpour, N. Ensemble models based on CNN and LSTM for dropout prediction in MOOC. Expert Syst. Appl. 2024, 235, 121187. [Google Scholar] [CrossRef]
- Patthi, S.; Kumar, A.P.; Manav, T.; Ila Chandana Kumari, P. Multivariate Time Series Analysis and Batch Normalization for Air Quality Prediction in Long Short-Term Memory Networks. In Proceedings of the 2024 3rd International Conference for Innovation in Technology (INOCON), Bangalore, India, 1–3 March 2024; pp. 1–6. [Google Scholar]
- Nitika, N.; Keerthiveena, B.; Thakur, G.; Rathore, A.S. Convolutional Neural Networks Guided Raman Spectroscopy as a Process Analytical Technology (PAT) Tool for Monitoring and Simultaneous Prediction of Monoclonal Antibody Charge Variants. Pharm. Res. 2024, 41, 463–479. [Google Scholar] [CrossRef] [PubMed]
- García-Vera, Y.E.; Polochè-Arango, A.; Mendivelso-Fajardo, C.A.; Gutiérrez-Bernal, F.J. Hyperspectral Image Analysis and Machine Learning Techniques for Crop Disease Detection and Identification: A Review. Sustainability 2024, 16, 6064. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, X.; Yu, H.; Chen, Z.; Du, W.; Chen, N. Incorporating spatial autocorrelation into deformable ConvLSTM for hourly precipitation forecasting. Comput. Geosci. 2024, 184, 105536. [Google Scholar] [CrossRef]
- Bendaouia, A.; Abdelwahed, E.H.; Qassimi, S.; Boussetta, A.; Benzakour, I.; Amar, O.; Hasidi, O. Artificial intelligence for enhanced flotation monitoring in the mining industry: A ConvLSTM-based approach. Comput. Chem. Eng. 2024, 180, 108476. [Google Scholar] [CrossRef]
- Oyewola, D.O.; Akinwunmi, S.A.; Omotehinwa, T.O. Deep LSTM and LSTM-Attention Q-learning based reinforcement learning in oil and gas sector prediction. Knowl.-Based Syst. 2024, 284, 111290. [Google Scholar] [CrossRef]
- Pan, H.; Yang, J.; Yu, Y.; Zheng, Y.; Zheng, X.; Hang, C. Intelligent Low-Consumption Optimization Strategies: Economic Operation of Hydropower Stations Based on Improved LSTM and Random Forest Machine Learning Algorithm. Mathematics 2024, 12, 1292. [Google Scholar] [CrossRef]
- Moon, Y.; Lee, Y.; Hwang, Y.; Jeong, J. Long Short-Term Memory Autoencoder and Extreme Gradient Boosting-Based Factory Energy Management Framework for Power Consumption Forecasting. Energies 2024, 17, 3666. [Google Scholar] [CrossRef]
- Li, J.; Wu, G.; Zhang, Y.; Shi, W. Optimizing flood predictions by integrating LSTM and physical-based models with mixed historical and simulated data. Heliyon 2024, 10, e33669. [Google Scholar] [CrossRef]
- Lanjewar, M.G.; Panchbhai, K.G.; Patle, L.B. Fusion of transfer learning models with LSTM for detection of breast cancer using ultrasound images. Comput. Biol. Med. 2024, 169, 107914. [Google Scholar] [CrossRef]
Reference | Focus | Results |
---|---|---|
Tsuzuki et al. [8] | Synthesis of CdS QDs via mechanochemical reaction | Developed a novel approach to synthesize ultrafine CdS QDs (<8 nm) with controlled particle size; confirmed by XRD, TEM, and UV-VIS absorption spectroscopy. |
Chen et al. [9] | Water-soluble luminescent CdS QDs | First synthesized water-soluble CdS QDs with selective ion detection capabilities; sensitivities varied with capping agents (e.g., polyphosphate, thioglycerol). |
Kim et al. [10] | Temperature dependence of PL dynamics | Anomalous PL decay profiles slowed with increasing temperature, explained by a three-state model; demonstrated size-controlled QDs with high PL efficiency. |
Kim et al. [11] | Effects of surface modification on PL properties | Enhanced band-edge PL intensity through Cd(OH)2 layer modification; significant reduction in nonradiative recombination processes noted. |
Chen et al. [13] | Luminescent CdS QDs modified with L-cysteine | Demonstrated potential as luminescence probes for metal ions in solutions; detection limits and concentration-dependent quenching effects were characterized. |
Zhen et al. [15] | Correlation between PL and crystal growth mechanisms | Identified emission spectrum evolution related to Ostwald ripening and oriented attachment; variations in PL attributed to surface and internal defects. |
Fang et al. [18] | Synthesis of CdS/ZnS QDs using microemulsion method | Demonstrated control over shell thickness and observed strong blue shift in PL peaks as the water-to-surfactant ratio changed. |
Mehata [22] | Field-induced changes in optical absorption of CdS QDs | Observed enhanced electric dipole moments and significant PL quenching due to exciton dissociation; insights for applications in various technologies. |
Martynenko et al. [24] | Excitation energy dependence of PL quantum yields | Established strong correlation between excitation energy and PL quantum yields; potential for using circular dichroism to study electronic structures in QDs. |
Smirnov [27] | Non-radiative energy transfer from CdS QDs to MB molecules | Revealed effective Förster resonance energy transfer; luminescence intensity and lifetime improved at lower temperatures. |
Hu et al. [30] | Influence of oxygen on the PL of CdSe/CdS QDs | Showed efficient transition from trion to single-exciton states with increasing oxygen pressure; highlighted the significance of high-quality epitaxial shells. |
Devadoss et al. [33] | Optical properties of CdS with Ba2+ and Zn2+ incorporation | Enhanced optical properties and tunable emissions were achieved; confirmed structural integrity and purity without capping agents. |
Kuznetsova et al. [34] | Stability and optical properties of CdS QDs in water solutions | Correlated stability to hydrodynamic radius and zeta-potential; proposed a pH control mechanism to switch on luminescence in MPS-capped CdS QDs. |
Reference | Focus | Material | Applied Method | Limitations | Results |
---|---|---|---|---|---|
Fu et al. [40] | Carrier recombination mechanisms in perovskite solar cells to improve performance. | Methyl-ammonium lead iodide vs. quadruple-cation perovskites | Combination of steady-state and transient PL, general recombination model simulation, normalization of transient PL curves at 50 ns, sensitivity analysis of trap parameters. | Significant variability in trap parameters across studies, uncertainties in experimental methods. | Quadruple-cation perovskite shows better performance due to reduced electron capture coefficient, not lower trap density. Steady-state PL intensity is sensitive to trap density. |
Yuan et al. [41] | Recombination dynamics in halide perovskites to optimize solar cell performance. | Halide perovskites | Steady-state and transient PL, time-correlated single-photon counting, gated CCD, dynamic range control via filters, SCAPS software for band diagrams, MATLAB simulations using coupled rate equations. | Experimental complexity, requiring multiple methods and software for accurate analysis. | Detailed analysis of recombination dynamics and quasi-Fermi-level splitting. PL simulations provide insights into recombination processes in perovskite films, aiding in solar cell optimization. |
Zhang et al. [42] | Challenges in explaining PL behavior in MAPbI3 thin films, focusing on film thickness (L). | MAPbI3 perovskite thin films | Steady-state PL spectra, PL decay kinetics with bi-exponential fitting to distinguish surface and bulk recombination, correlation of film thickness with trap density and charge transport properties. | Difficulty in isolating surface vs. bulk contributions to PL due to overlapping processes. | Thicker films show longer PL lifetimes due to reduced trap density and improved charge transport. Red-shifts in PL spectra with increasing thickness indicate changes in grain size and electronic environments. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malashin, I.; Daibagya, D.; Tynchenko, V.; Nelyub, V.; Borodulin, A.; Gantimurov, A.; Selyukov, A.; Ambrozevich, S.; Smirnov, M.; Ovchinnikov, O. Modeling Temperature-Dependent Photoluminescence Dynamics of Colloidal CdS Quantum Dots Using Long Short-Term Memory (LSTM) Networks. Materials 2024, 17, 5056. https://doi.org/10.3390/ma17205056
Malashin I, Daibagya D, Tynchenko V, Nelyub V, Borodulin A, Gantimurov A, Selyukov A, Ambrozevich S, Smirnov M, Ovchinnikov O. Modeling Temperature-Dependent Photoluminescence Dynamics of Colloidal CdS Quantum Dots Using Long Short-Term Memory (LSTM) Networks. Materials. 2024; 17(20):5056. https://doi.org/10.3390/ma17205056
Chicago/Turabian StyleMalashin, Ivan, Daniil Daibagya, Vadim Tynchenko, Vladimir Nelyub, Aleksei Borodulin, Andrei Gantimurov, Alexandr Selyukov, Sergey Ambrozevich, Mikhail Smirnov, and Oleg Ovchinnikov. 2024. "Modeling Temperature-Dependent Photoluminescence Dynamics of Colloidal CdS Quantum Dots Using Long Short-Term Memory (LSTM) Networks" Materials 17, no. 20: 5056. https://doi.org/10.3390/ma17205056
APA StyleMalashin, I., Daibagya, D., Tynchenko, V., Nelyub, V., Borodulin, A., Gantimurov, A., Selyukov, A., Ambrozevich, S., Smirnov, M., & Ovchinnikov, O. (2024). Modeling Temperature-Dependent Photoluminescence Dynamics of Colloidal CdS Quantum Dots Using Long Short-Term Memory (LSTM) Networks. Materials, 17(20), 5056. https://doi.org/10.3390/ma17205056