Low-Power Field-Deployable Interdigital Transducer-Based Scanning Laser Doppler Vibrometer for Wall-Thinning Detection in Plates
Abstract
:1. Introduction
2. Low-Power IDT-Based SLDV
2.1. Fabrication of Lead Magnesium Niobate–Lead Zirconate Titanate Single Crystals
2.2. Design and Fabrication of Low-Power IDT
3. Experiment
3.1. Wall-Thinning Measurement Procedure Using AWS
3.2. Specimen and Experimental Setup
3.3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lowe, M.; Diligent, O. Low-frequency reflection characteristics of the s 0 Lamb wave from a rectangular notch in a plate. J. Acoust. Soc. Am. 2002, 111, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.; Cawley, P.; Kao, J.; Diligent, O. The low frequency reflection characteristics of the fundamental antisymmetric Lamb wave a0 from a rectangular notch in a plate. J. Acoust. Soc. Am. 2002, 112, 2612–2622. [Google Scholar] [CrossRef] [PubMed]
- Hirao, M.; Ogi, H. An SH-wave EMAT technique for gas pipeline inspection. NDT E Int. 1999, 32, 127–132. [Google Scholar] [CrossRef]
- Thon, A.; Bélanger, P. EMAT design for minimum remnant thickness gauging using high order shear horizontal modes. Ultrasonics 2019, 95, 70–78. [Google Scholar] [CrossRef]
- Wilcox, P.; Lowe, M.; Cawley, P. The effect of dispersion on long-range inspection using ultrasonic guided waves. NDT E Int. 2001, 34, 1–9. [Google Scholar] [CrossRef]
- Wilcox, P. A rapid signal processing technique to remove the effect of dispersion from guided wave signals. IEEE Trans. Ultrason. 2003, 50, 419–427. [Google Scholar] [CrossRef]
- Sicard, R.; Goyette, J.; Zellouf, D. A numerical dispersion compensation technique for time recompression of Lamb wave signals. Ultrasonics 2002, 40, 727–732. [Google Scholar] [CrossRef]
- Xu, K.; Ta, D.; Moilanen, P.; Wang, W. Mode separation of Lamb waves based on dispersion compensation method. J. Acoust. Soc. Am. 2012, 131, 2714–2722. [Google Scholar] [CrossRef]
- Lee, J.; Takatsubo, J.; Toyama, N. Disbond monitoring at wing stringer tip based on built-in ultrasonic transducers and a pulsed laser. Smart Mater. Struct. 2007, 16, 1025–1035. [Google Scholar] [CrossRef]
- An, Y.; Park, B.; Sohn, H. Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate. Smart Mater. Struct. 2013, 22, 025022. [Google Scholar] [CrossRef]
- Lee, C.; Park, S. Damage visualization of pipeline structures using laser-induced ultrasonic waves. Struct. Health Monit. 2015, 14, 475–488. [Google Scholar] [CrossRef]
- He, J.; Yuan, F. Damage identification for composite structures using a cross-correlation reverse-time migration technique. Struct. Health Monit. 2015, 14, 558–570. [Google Scholar] [CrossRef]
- Kudela, P.; Radzieński, M.; Ostachowicz, W. Identification of cracks in thin-walled structures by means of wavenumber filtering. Mech. Syst. Signal Process. 2015, 50–51, 456–466. [Google Scholar] [CrossRef]
- Segers, J.; Hedayatrasa, S.; Poelman, G.; Van Paepegem, W.; Kersemans, M. Robust and baseline-free full-field defect detection in complex composite parts through weighted broadband energy mapping of mode-removed guided waves. Mech. Syst. Signal Process. 2021, 151, 107360. [Google Scholar] [CrossRef]
- Rogge, M.; Leckey, C. Characterization of impact damage in composite laminates using guided wavefield imaging and local wavenumber domain analysis. Ultrasonics 2013, 53, 1217–1226. [Google Scholar] [CrossRef]
- Tian, Z.; Howden, S.; Ma, Z.; Xiao, W.; Yu, L. Pulsed laser-scanning laser Doppler vibrometer (PL-SLDV) phased arrays for damage detection in aluminum plates. Mech. Syst. Signal Process. 2019, 121, 158–170. [Google Scholar] [CrossRef]
- Yu, L.; Tian, Z.; Leckey, C. Crack imaging and quantification in aluminum plates with guided wave wavenumber analysis methods. Ultrasonics 2015, 62, 203–212. [Google Scholar] [CrossRef]
- Flynn, E.; Chong, S.; Jarmer, G.; Lee, J. Structural imaging through local wavenumber estimation of guided waves. NDT E Int. 2013, 59, 1–10. [Google Scholar] [CrossRef]
- Juarez, P.; Leckey, C. Multi-frequency local wavenumber analysis and ply correlation of delamination damage. Ultrasonics 2015, 62, 56–65. [Google Scholar] [CrossRef]
- Kang, K.; Kim, Y.; Choi, W.; Park, K. Measurement of shallow defects using noncontact broadband leaky Lamb wave produced by pulsed laser with ultrasound microphone. NDT E Int. 2020, 111, 102224. [Google Scholar] [CrossRef]
- Kudela, P.; Radzienski, M.; Ostachowicz, W. Impact induced damage assessment by means of Lamb wave image processing. Mech. Syst. Signal Process. 2018, 102, 23–36. [Google Scholar] [CrossRef]
- Zhang, K.; Zhenggan, Z. Quantitative characterization of disbonds in multilayered bonded composites using laser ultrasonic guided waves. NDT E Int. 2018, 97, 42–50. [Google Scholar] [CrossRef]
- Yu, F.; Saito, O.; Okabe, Y. Laser ultrasonic visualization technique using a fiber-optic Bragg grating ultrasonic sensor with an improved adhesion configuration. Struct. Health Monit. 2021, 20, 303–320. [Google Scholar] [CrossRef]
- Gao, T.; Liu, X.; Zhu, J.; Zhao, B.; Qing, X. Multi-frequency localized wave energy for delamination identification using laser ultrasonic guided wave. Ultrasonics 2021, 116, 106486. [Google Scholar] [CrossRef] [PubMed]
- Majhi, S.; Mukherjee, A.; George, N.V.; Karaganov, V.; Uy, B. Corrosion monitoring in steel bars using Laser ultrasonic guided waves and advanced signal processing. Mech. Syst. Signal Process. 2021, 149, 107176. [Google Scholar] [CrossRef]
- Gao, T.; Wang, Y.; Qing, X. A new laser ultrasonic inspection method for the detection of multiple delamination defects. Materials 2021, 14, 2424. [Google Scholar] [CrossRef]
- Chia, C.C.; Lee, S.Y.; Harmin, M.Y.; Choi, Y.; Lee, J.R. Guided ultrasonic waves propagation imaging: A review. Meas. Sci. Technol. 2023, 34, 052001. [Google Scholar] [CrossRef]
- Zarei, A.; Pilla, S. Laser ultrasonics for nondestructive testing of composite materials and structures: A review. Ultrasonics 2024, 136, 107163. [Google Scholar] [CrossRef]
- Mesnil, O.; Leckey, C.; Ruzzene, M. Instantaneous and local wavenumber estimations for damage quantification in composites. Struct. Health Monit. 2015, 14, 193–204. [Google Scholar] [CrossRef]
- Gao, T.; Sun, H.; Hong, Y.; Qing, X. Hidden corrosion detection using laser ultrasonic guided waves with multi-frequency local wavenumber estimation. Ultrasonics 2020, 108, 106182. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, B.; Hao, W.; Luo, Y.; Chen, H. Localization and characterization of delamination in laminates using the local wavenumber method. Compos. Struct. 2020, 238, 111972. [Google Scholar] [CrossRef]
- Jeon, J.; Gang, S.; Park, G.; Flynn, E.; Kang, T.; Han, S. Damage detection on composite structures with standing wave excitation and wavenumber analysis. Adv. Compos. Mat. 2017, 26, 53–65. [Google Scholar] [CrossRef]
- Kang, T.; Lee, J.; Han, S.; Park, J.; Park, H.; Jeon, J. Measuring plate thickness using spatial local wavenumber filtering. J. Korean Soc. Nondestruc. Test 2016, 36, 370–376. [Google Scholar] [CrossRef]
- Jeon, J.; Kim, D.; Park, G.; Flynn, E.; Kang, T.; Han, S. 2D-wavelet wavenumber filtering for structural damage detection using full steady-state wavefield laser scanning. NDT E Int. 2020, 116, 102343. [Google Scholar] [CrossRef]
- Flynn, E.B.; Jarmer, G.S. High-speed, non-contact, baseline-free imaging of hidden defects using scanning laser measurements of steady-state ultrasonic vibration. Struct. Health Monit. 2013, 1, 1186–1193. [Google Scholar]
- Kang, T.; Moon, S.; Han, S.; Jeon, J.; Park, G. Measurement of shallow defects in metal plates using inter-digital transducer-based laser-scanning vibrometer. NDT E Int. 2019, 102, 26–34. [Google Scholar] [CrossRef]
- Kang, T.; Han, S.; Moon, S.; Han, S.; Jeon, J.; Park, G. Lamb-wave sparse-frequency interdigital-transducer-based scanning laser Doppler vibrometry for quantitative depth-wise visualization of defects in plates. NDT E Int. 2019, 107, 102137. [Google Scholar] [CrossRef]
- Moon, S.; Kang, T.; Han, S.; Jeon, J.; Park, G. Optimization of excitation frequency and guided wave mode in acoustic wavenumber spectroscopy for shallow wall-thinning defect detection. J. Mech. Sci. Technol. 2018, 32, 5213–5221. [Google Scholar] [CrossRef]
- Kang, T.; Han, S.; Moon, S.; Han, S.; Jeon, J.; Park, G. Measurement of defects in a plate using dry-coupled interdigital transducer–based scanning laser Doppler vibrometer. Struct. Health Monit. 2021, 20, 596–603. [Google Scholar] [CrossRef]
- Available online: www.ceracomp.com (accessed on 1 October 2024).
- Kang, S.; Park, J.; Ko, S.; Lee, H. Solid-state conversion of single crystals: The principle and the state-of-the-art. J. Am. Ceram. Soc. 2015, 98, 347–360. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, S.; Kim, D.; Lee, H.; Shrout, T. Temperature dependence of the dielectric, piezoelectric, and elastic constants for Pb (Mg 1/3 Nb 2/3) O3–Pb Zr O3–Pb Ti O3 piezocrystals. J. Appl. Phys. 2007, 102, 114103. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, S.; Kim, D.; Lee, H.; Shrout, T. Elastic, piezoelectric, and dielectric properties of 0.71 Pb (Mg1/3Nb2/3) O3–0.29 PbTiO3 crystals obtained by solid-state crystal growth. J. Am. Ceram. Soc. 2008, 91, 683–686. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, S.; Kim, D.; Lee, H.; Shrout, T. Characterization of Mn-modified Pb (Mg1/3 Nb2/3) O3–PbZr O3–PbTi O3 single crystals for high power broad bandwidth transducers. Appl. Phys. Lett. 2008, 93, 122908. [Google Scholar] [CrossRef] [PubMed]
- 176-1987; IEEE Standard on Piezoelectricity. IEEE: New York, NY, USA, 1988. Available online: https://ieeexplore.ieee.org/document/26560 (accessed on 1 October 2024).
- Xu, T. 7—Energy harvesting using piezoelectric materials in aerospace structures. Struct. Health Monit. 2016, 175–215. [Google Scholar] [CrossRef]
- Shen, Z.; Lu, J.; Tan, C.; Miao, J.; Wang, Z. d33 mode piezoelectric diaphragm based acoustic transducer with high sensitivity. Sens. Actuators A Phys. 2013, 189, 93–99. [Google Scholar] [CrossRef]
Type | CSL2 (001) | CSL2 (011) | APC 850 | |
---|---|---|---|---|
Parameter | ||||
0.011 | 0.013 | 2.00 | ||
0.91 | 0.88 | 0.72 | ||
0.45 | 0.76 | 0.36 | ||
(pC/N) | 1952 | 753 | 400 | |
(pC/N) | 750 | 919 | 175 |
Depth | IDT-Based SLDV | Dry-Coupled IDT-Based SLDV | Low-Power IDT-Based SLDV |
---|---|---|---|
5% (Error rate) (0.3 mm) | 1.77% (64.6%) (0.11 mm) | 1.47% (70.6%) (0.09 mm) | 1.7% (66%) (0.10 mm) |
10% (Error rate) (0.6 mm) | 7.52% (24.8%) (0.45 mm) | 8.5% (15%) (0.51 mm) | 8.37% (16.3%) (0.50 mm) |
15% (Error rate) (0.9 mm) | 11.17% (25.5%) (0.67 mm) | 13.17% (12.2%) (0.79 mm) | 13% (13.3%) (0. 78 mm) |
20% (Error rate) (1.2 mm) | 14.5% (27.5%) (0.87 mm) | 15.5% (22.5%) (0.93 mm) | 14.83% (25.8%) (0.89 mm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, T.; Han, S.; Yeom, Y.-T.; Lee, H.-Y. Low-Power Field-Deployable Interdigital Transducer-Based Scanning Laser Doppler Vibrometer for Wall-Thinning Detection in Plates. Materials 2024, 17, 5098. https://doi.org/10.3390/ma17205098
Kang T, Han S, Yeom Y-T, Lee H-Y. Low-Power Field-Deployable Interdigital Transducer-Based Scanning Laser Doppler Vibrometer for Wall-Thinning Detection in Plates. Materials. 2024; 17(20):5098. https://doi.org/10.3390/ma17205098
Chicago/Turabian StyleKang, To, Soonwoo Han, Yun-Taek Yeom, and Ho-Yong Lee. 2024. "Low-Power Field-Deployable Interdigital Transducer-Based Scanning Laser Doppler Vibrometer for Wall-Thinning Detection in Plates" Materials 17, no. 20: 5098. https://doi.org/10.3390/ma17205098
APA StyleKang, T., Han, S., Yeom, Y. -T., & Lee, H. -Y. (2024). Low-Power Field-Deployable Interdigital Transducer-Based Scanning Laser Doppler Vibrometer for Wall-Thinning Detection in Plates. Materials, 17(20), 5098. https://doi.org/10.3390/ma17205098