Effect of Constant Cyclic Stress Coupling on the Fatigue Behavior of 304LN Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Specimen Design
2.3. Corrosion Fatigue Test
3. Results and Discussion
3.1. Effect of Coupled Load on Crack Propagation Rate at Room Temperature
3.1.1. Crack Propagation under Constant Load
3.1.2. Crack Propagation Rate Equation under Coupled Load
3.1.3. Fracture Morphology under Different Load Conditions
3.2. Effect of Coupled Stress on the Corrosion Fatigue of 304LN SS in 300 °C Water Environment
3.2.1. Corrosion Fatigue Life under Coupled Stress
3.2.2. Corrosion Fatigue Fracture Morphology of Different Stress Types
3.3. Effect of Temperature on the Corrosion Fatigue of 304LN SS in High-Temperature Water Environment
3.3.1. Corrosion Fatigue Life under Different High-Temperature Water Environments
3.3.2. Corrosion Fatigue Fracture Morphology of Different Temperature
4. Conclusions
- (1)
- The cracks did not propagate even after 78 days under constant loads of 5 KN and 7.5 KN for 304LN SS at room temperature. The fatigue CGR of the specimen increased by about an order of magnitude when coupled with the constant load cyclic fatigue load induced by a synergistic acceleration effect;
- (2)
- The fatigue life was the longest under 200 °C high-temperature water for 304LN SS, and its fatigue life was roughly the same under 250 °C and 300 °C water. The peak fatigue stress was almost the same at three different test temperatures;
- (3)
- In a 300 °C high-temperature water environment, the fatigue life under the coupling of constant stress and cyclic symmetric fatigue stress is significantly lower than that under cyclic symmetric stress lonely. The fracture surface shows an increase in fatigue striation spacing under higher tensile stress, and the number of secondary cracks increased significantly;
- (4)
- The synergistic acceleration effect of coupled stress was attributed to the fact that the higher tensile stress accelerated the plastic deformation from the slip band and formed more oxides in a high-temperature water environment. This leads to damage to the matrix during the movement of the slip bands, further promoting the fatigue crack initiation and propagation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, H.; Yang, B.; Wang, S.; Zhang, M.; Shi, Y.; Chen, Y. Effect of thermal aging on corrosion fatigue of Z3CN20.09M duplex stainless steel in high temperature water. Mater. Sci. Eng. A 2016, 655, 183–192. [Google Scholar] [CrossRef]
- Seifert, H.; Ritter, S.; Leber, H. Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions. Corr. Sci. 2012, 55, 61–75. [Google Scholar] [CrossRef]
- Lu, Z.; Shoji, T.; Meng, F.; Qiu, Y.; Dan, T.; Xue, H. Effects of water chemistry and loading conditions on stress corrosion cracking of cold-rolled 316NG stainless steel in high temperature water. Corr. Sci. 2011, 53, 247–262. [Google Scholar] [CrossRef]
- Ti, W.; Wu, H.; Xue, F.; Zhang, G.; Peng, Q.; Fang, K. Effect of thermal aging on the mechanical, intergranular corrosion and corrosion fatigue properties of Z3CN20.09M cast duplex stainless steel. Nucl. Eng. Technol. 2021, 53, 2591–2599. [Google Scholar] [CrossRef]
- Ritter, S.; Seifert, H. Effect of corrosion potential on the corrosion fatigue crack growth behaviour of low-alloy steels in high-temperature water. J. Nucl. Mater. 2008, 375, 72–79. [Google Scholar] [CrossRef]
- Xia, D.; Sun, Y.; Fan, H. Characterization of passive film formed on 304 SS in simulated alkaline water chemistries containing sulfur at 300 ℃. Tran. T.J. Univ. 2015, 21, 554–561. [Google Scholar] [CrossRef]
- Liao, J.; Tan, J.; Wu, X.; Ning, D.; Xue, G.; Yao, W. Corrosion fatigue behavior of 304 stainless steel notched specimen in high- temperature pressurized water. Mater. Sci. Eng. A 2019, 748, 137–145. [Google Scholar] [CrossRef]
- Cissé, S.; Laffont, L.; Tanguy, B.; Lafont, M.; Andrieu, E. Effect of surface preparation on the corrosion of austenitic stainless steel 304L in high temperature steam and simulated PWR primary water. Corr. Sci. 2012, 56, 209–216. [Google Scholar] [CrossRef]
- Chang, L.; Volpe, L.; Wang, Y.; Burke, M.; Maurotto, A.; Tice, D. Effect of machining on stress corrosion crack initiation in warm forged type 304L stainless steel in high temperature water. Acta Mater. 2019, 165, 203–214. [Google Scholar] [CrossRef]
- Yeh, T.; Huang, G.; Wang, M.; Tsai, C. Stress corrosion cracking in dissimilar metal welds with 304L stainless steel and Alloy 82 in high temperature water. Prog. Nucl. Energ. 2013, 63, 7–11. [Google Scholar] [CrossRef]
- Yaguchi, S.; Yonezawa, T. Intergranular Stress Corrosion Cracking growth perpendicular to fatigue pre-cracks in T–L oriented compact tension specimens in simulated Pressurized Water Reactor primary water. Corr. Sci. 2014, 86, 326–336. [Google Scholar] [CrossRef]
- Du, D.; Wang, J.; Chen, K.; Zhang, L.; Andresen, P. Environmentally assisted cracking of forged 316LN stainless steel and its weld in high temperature water. Corr. Sci. 2019, 147, 69–80. [Google Scholar] [CrossRef]
- Meisnar, M.; Vilalta-Clemente, A.; Moody, M.; Arioka, K.; Lozano-Perez, S. A mechanistic study of the temperature dependence of the stress corrosion crack growth rate in SUS316 stainless steels exposed to PWR primary water. Acta Mater. 2016, 114, 15–24. [Google Scholar] [CrossRef]
- Zhang, W.; Fang, K.; Hu, Y.; Wang, S.; Wang, X. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel. Corr. Sci. 2016, 108, 173–184. [Google Scholar] [CrossRef]
- Du, D.; Chen, K.; Lu, H.; Zhang, L.; Shi, X.; Xu, X. Effects of chloride and oxygen on stress corrosion cracking of cold worked 316/316L austenitic stainless steel in high temperature water. Corr. Sci. 2016, 110, 134–142. [Google Scholar] [CrossRef]
- Was, G.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E.; Allen, T. Corrosion and stress corrosion cracking in supercritical water. J. Nucl. Mater. 2007, 371, 176–201. [Google Scholar] [CrossRef]
- Meng, F.; Lu, Z.; Shoji, T.; Wang, J.; Han, E.; Ke, W. Stress corrosion cracking of uni-directionally cold worked 316NG stainless steel in simulated PWR primary water with various dissolved hydrogen concentrations. Corr. Sci. 2011, 53, 2558–2565. [Google Scholar] [CrossRef]
- Wu, H.; Li, C.; Fang, K.; Xue, F.; Yang, B.; Song, X. Effect of grain size on the low cycle fatigue behavior of 316LN stainless steel in high temperature water. Mater. Corr. 2017, 68, 1180–1189. [Google Scholar] [CrossRef]
- Wu, H.; Yang, B.; Wang, Y. Effect of sigma phase on the low cycle fatigue property of Z3CN20.09M cast duplex stainless steel in high temperature water. Mater. Corr. 2015, 66, 663–669. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, Y.; Zhang, T.; Wang, Y. Study on the mechanism of high-cycle corrosion fatigue crack initiation in X80 steel. Corr. Sci. 2012, 57, 99–103. [Google Scholar] [CrossRef]
- Wu, H.; Yang, B.; Shi, Y.; Gao, Q.; Wang, Y. Crack Initiation Mechanism of Z3CN20.09M Duplex Stainless Steel during Corrosion Fatigue in Water and Air at 290 °C. J. Mater. Sci. Technol. 2015, 31, 1144–1150. [Google Scholar] [CrossRef]
- Ehrnstén, U.; Andresen, P.; Que, Z. A review of stress corrosion cracking of austenitic stainless steels in PWR primary water. J. Nucl. Mater. 2024, 588, 154815. [Google Scholar] [CrossRef]
- Mukahiwaa, K.; Sceninia, F.; Burkea, M.; Plattsb, N.; Ticeb, D.; Stairmandb, J. Corrosion fatigue and microstructural characterisation of Type 316 austenitic stainless steels tested in PWR primary water. Corr. Sci. 2018, 131, 57–70. [Google Scholar] [CrossRef]
- Seifert, H.; Ritter, S. Corrosion fatigue crack growth behaviour of low-alloy reactor pressure vessel steels under boiling water reactor conditions. Corr. Sci. 2008, 50, 1884–1899. [Google Scholar] [CrossRef]
- Seifert, H.; Ritter, S.; Leber, H. Corrosion fatigue initiation and short crack growth behaviour of austenitic stainless steels under light water reactor conditions. Corr. Sci. 2012, 59, 20–34. [Google Scholar] [CrossRef]
- Duff, J.; Marrow, T. In situ observation of short fatigue crack propagation in oxygenated water at elevated temperature and pressure. Corr. Sci. 2013, 68, 34–43. [Google Scholar] [CrossRef]
- Cho, H.; Kim, B.; Kim, I.; Jang, C. Low cycle fatigue behaviors of type 316LN austenitic stainless steel in 310 °C deaerated water–fatigue life and dislocation structure development. Mater. Sci. Eng. A 2008, 476, 248–256. [Google Scholar] [CrossRef]
- Maeng, W.; Kang, Y.; Nam, T.; Ohashi, S.; Ishihara, T. Synergistic interaction of fatigue and stress corrosion on the corrosion fatigue crack growth behavior in Alloy 600 in high temperature and high pressure water. J. Nucl. Mater. 1999, 275, 194–200. [Google Scholar] [CrossRef]
- Lu, Z.; Shoji, T.; Takeda, Y.; Ito, Y.; Kai, A.; Yamazaki, S. Transient and steady state crack growth kinetics for stress corrosion cracking of a cold worked 316L stainless steel in oxygenated pure water at different temperatures. Corr. Sci. 2008, 50, 561–575. [Google Scholar] [CrossRef]
- Mannan, S.; Valsan, M. High-temperature low cycle fatigue, creep–fatigue and thermomechanical fatigue of steels and their welds. Int. J. Mech. Sci. 2006, 48, 160–175. [Google Scholar] [CrossRef]
- Nam, S. Assessment of damage and life prediction of austenitic stainless steel under high temperature creep–fatigue interaction condition. Mater. Sci. Eng. A 2002, 322, 64–72. [Google Scholar] [CrossRef]
- Ghazi, A.; Khan, H.; Farooq, M.; Jahangir, S.; Anwar, M. Effect of temperature and medium environment on corrosion fatigue behavior of Inconel 625. Mater. Corr. 2023, 74, 1030–1038. [Google Scholar] [CrossRef]
- Li, Z.; Lu, Y.; You, L.; Zhang, X.; Wang, L.; Tian, D. Effect of temperature on corrosion fatigue behavior of Inconel Alloy 690TT steam generator tube. Corr. Sci. 2024, 227, 111741. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, J.; Wu, X.; Han, E.; Ke, W.; Rao, J. Effects of temperature on corrosion fatigue behavior of 316LN stainless steel in high-temperature pressurized water. Corr. Sci. 2019, 146, 80–89. [Google Scholar] [CrossRef]
Element | C | Si | Mn | P | S | Cr | Ni | Mo | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|
304LN | 0.015 | 0.36 | 0.81 | 0.017 | 0.002 | 18.23 | 9.27 | 0.21 | 0.13 | Balance |
Wave Form | Strain Amplitude | Strain Rate | Dissolved Oxygen | pH | Conductivity | Temperature | Pressure |
---|---|---|---|---|---|---|---|
Triangular | ±0.3~±0.8% | 0.001/s | 10 ppm | 6.6 | 0.15 µS/cm | 200, 250, 300 °C | 8 MPa |
Location | X/W | C0 | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|---|---|
V0 | −0.250 | 1.0010 | −4.6695 | 18.460 | −236.82 | 1214.8 | −2143.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Liu, H.; Xu, C.; Jia, W.; Quan, Q.; Yin, J.; Li, Y.; Jin, X.; Qian, W.; Dong, H.; et al. Effect of Constant Cyclic Stress Coupling on the Fatigue Behavior of 304LN Stainless Steel. Materials 2024, 17, 5220. https://doi.org/10.3390/ma17215220
Wu H, Liu H, Xu C, Jia W, Quan Q, Yin J, Li Y, Jin X, Qian W, Dong H, et al. Effect of Constant Cyclic Stress Coupling on the Fatigue Behavior of 304LN Stainless Steel. Materials. 2024; 17(21):5220. https://doi.org/10.3390/ma17215220
Chicago/Turabian StyleWu, Huanchun, Huiqiang Liu, Chaoliang Xu, Wenqing Jia, Qiwei Quan, Jian Yin, Yuanfei Li, Xiao Jin, Wangjie Qian, Haitao Dong, and et al. 2024. "Effect of Constant Cyclic Stress Coupling on the Fatigue Behavior of 304LN Stainless Steel" Materials 17, no. 21: 5220. https://doi.org/10.3390/ma17215220
APA StyleWu, H., Liu, H., Xu, C., Jia, W., Quan, Q., Yin, J., Li, Y., Jin, X., Qian, W., Dong, H., & Liu, X. (2024). Effect of Constant Cyclic Stress Coupling on the Fatigue Behavior of 304LN Stainless Steel. Materials, 17(21), 5220. https://doi.org/10.3390/ma17215220