Evaluation of the Applicability of Waste Rubber in Insulation Panels with Regard to Its Grain Size and Panel Thickness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Porosity
2.2.2. Modulus of Elasticity
2.2.3. Thermal Conductivity Measurement
2.2.4. Airborne Sound Insulation Index
3. Results and Discussion
3.1. Porosity
3.2. Modulus of Elasticity
3.3. Thermal Conductivity
3.4. Airborne Sound Insulation Index
3.5. Possible Application of Waste Rubber Panels in Civil Engineering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ETRA—The European Tyre Recycling Association. 2024. Available online: https://www.etra-eu.org/ (accessed on 12 August 2024).
- Hassan, M.; Rodrigue, D. Application of Waste Tire in Construction: A Road towards Sustainability and Circular Economy. Sustainability 2024, 16, 3852. [Google Scholar] [CrossRef]
- Zeilerbauer, L.; Lindorfer, J.; Fuchs, P.; Knöbl, M.; Ravnås, A.; Maldal, T.; Gilje, E.; Paulik, C.; Fischer, J. Quantifying the Sustainability of Football (Soccer) Pitches: A Comparison of Artificial and Natural Turf Pitches with a Focus on Microplastics and Their Environmental Impacts. Sustainability 2024, 16, 3487. [Google Scholar] [CrossRef]
- Hsieh, H.; Yao, K.; Wang, C.; Chen, C.; Huang, S. Using a Circular Economy and Supply Chain as a Framework for Remanufactured Products in the Rubber Recycling Industry. Sustainability 2024, 16, 2824. [Google Scholar] [CrossRef]
- Gigar, F.; Khennane, A.; Liow, J.; Al-Deen, S.; Tekle, B.; Fitzgerald, C.; Basaglia, A.; Webster, C. Advancing Sustainable Construction Materials: Wood, Rubber, and Cenospheres Geopolymer Masonry Units Development. Sustainability 2024, 16, 3283. [Google Scholar] [CrossRef]
- Song, H.; Zhou, T.; Luo, Y.; Wang, C.; Zhang, H. A Study on the Performance of Asphalt Modified by Desulfurized Waste Rubber/Ethylene Vinyl Acetate Composite with Additives. Sustainability 2024, 16, 1122. [Google Scholar] [CrossRef]
- Bilema, M.; Yuen, C.; Alharthai, M.; Al-Saffar, Z.; Al-Sabaeei, A.; Yusoff, N. A Review of Rubberised Asphalt for Flexible Pavement Applications: Production, Content, Performance, Motivations and Future Directions. Sustainability 2023, 15, 14481. [Google Scholar] [CrossRef]
- Abualia, A.; Akentuna, M.; Mohammad, L.; Cooper, S.; Cooper, S. Improving Asphalt Binder Durability Using Sustainable Materials: A Rheological and Chemical Analysis of Polymer-, Rubber-, and Epoxy-Modified Asphalt Binders. Sustainability 2024, 16, 5379. [Google Scholar] [CrossRef]
- Zvonarić, M.; Barišić, I.; Dokšanović, T. Effect of rubber granules and rubber threads on mechanical properties of cement-bound base course. Constr. Build. Mater. 2024, 437, 137094. [Google Scholar] [CrossRef]
- Farhan, A.H.; Dawson, A.R.; Thom, N.H. Compressive behaviour of rubberized cement-stabilized aggregate mixtures. Constr. Build. Mater. 2020, 262, 120038. [Google Scholar] [CrossRef]
- Saberian, M.; Li, J. Long-term permanent deformation behaviour of recycled concrete aggregate with addition of crumb rubber in base and sub-base applications. Soil Dyn. Earthq. Eng. 2019, 121, 436–441. [Google Scholar] [CrossRef]
- Azunna, S.U.; Aziz, F.N.; Rashid, R.S.; Bakar, N.B. Review on the characteristic properties of crumb rubber concrete. Clean. Mater. 2024, 12, 100237. [Google Scholar] [CrossRef]
- Yan, J.; Wu, J.; Xiang, Y.; Jiang, A.; Cao, H.; Han, X.; Li, H. Seismic performance assessment of GFRP-steel double-skin confned rubber concrete composite columns. J. Constr. Steel Res. 2024, 216, 108597. [Google Scholar] [CrossRef]
- Kantasiri, T.; Kasemsiri, P.; Pongsa, U.; Posi, P.; Chindaprasirt, P. Optimization of concrete containing waste crumb rubber mix design for thermal insulating applications using Taguchi method. Constr. Build. Mater. 2024, 434, 136636. [Google Scholar] [CrossRef]
- Corredor-Bedoya, A.; Zoppi, R.; Serpa, A. Composites of scrap tire rubber particles and adhesive mortar–Noise insulation potential. Cem. Concr. Compos. 2017, 82, 45–66. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Elmoaty, A.E.M.A.; AbdElbaset, M.M. Utilization of waste rubber in non-structural applications. Constr. Build. Mater. 2015, 91, 195–207. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, P.; Yan, X.; Li, H.; Chen, X. The Application of Solid Waste in Thermal Insulation Materials: A Review. J. Renew. Mater. 2024, 12, 329–347. [Google Scholar] [CrossRef]
- Holmes, N.; Browne, A.; Montague, C. Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Constr. Build. Mater. 2014, 73, 195–204. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Janik, H.; Borzędowska-Labuda, K.; Kucińska-Lipka, J. Environmentally friendly poly-mer-rubber composites obtained from waste tyres: A review. J. Clean. Prod. 2017, 147, 560–571. [Google Scholar] [CrossRef]
- Ramarad, S.; Khalid, M.; Ratnam, C.T.; Chuah, A.L.; Rashmi, W. Waste tire rubber in polymer blends: A review on the evolution, properties and future. Prog. Mater. Sci. 2015, 72, 100–140. [Google Scholar] [CrossRef]
- Shahapurkar, K.; Kiran, M.; Alamir, M.A.; Tirth, V.; Alarifi, I.M.; Chenrayan, V. Quasi-static compressive behaviour of epoxy composites reinforced with crumb rubber. Polym. Polym. Compos. 2023, 31, 1–9. [Google Scholar] [CrossRef]
- Wiśniewska, P.; Wójcik, N.A.; Kosmela, P.; Ryl, J.; Bogdanowicz, R.; Vahabi, H.; Shadman, A.; Formela, K.; Saeb, M.R. Recycled rubber wastes-based polymer composites with flame retardancy and electrical conductivity: Rational design, modeling and optimization. Compos. Sci. Technol. 2024, 251, 110563. [Google Scholar] [CrossRef]
- Wiśniewska, P.; Wójcik, N.A.; Ryl, J.; Bogdanowicz, R.; Vahabi, H.; Formela, K.; Saeb, M.R. Rubber wastes recycling for developing advanced polymer composites: A warm handshake with sustainability. J. Clean. Prod. 2023, 427, 139010. [Google Scholar] [CrossRef]
- Formela, K. Strategies for compatibilization of polymer/waste tire rubber systems prepared via melt-blending. Adv. Ind. Eng. Polym. Res. 2024, 7, 466–481. [Google Scholar] [CrossRef]
- Hejna, A.; Korol, J.; Przybysz-Romatowska, M.; Zedler, Ł.; Chmielnicki, B.; Formela, K. Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers—A review. Waste Manag. 2020, 108, 106–118. [Google Scholar] [CrossRef]
- Crnoja, A.; Kersh, V.; Popov, O.; Dovhulia, A. Laboratory Studies of the Heat-Insulating Properties of the Panels that Made of Recycled Rubber. Key Eng. Mater. 2020, 864, 66–72. [Google Scholar] [CrossRef]
- EN ISO 527-4:2008; Plastics—Determination of Tensile Properties—Part 4: Test Conditions for Isotropic and Orthotopic Fibre-reinforced Plastic Composites. ISO: Geneva, Switzerland, 2008.
- Povalyaev, M.I. Opredelenie Koefficientov Perenosa Tepla Metodom Ploskogo Teplovogo Impul’sa; Transzheldorizdat: Moscow, Russia, 1959; pp. 210–214. [Google Scholar]
- Lykov, A.V.; Mihajlov, Y. Teoriya teplo- i massoperenosa; Gosenergoizdat: Moscow, Russia, 1963; p. 152. [Google Scholar]
- Chudnovskij, A.F. Teplofizicheskie harakteristiki dispersnyh materialov; Fizmatgiz Publ.: Moscow, Russia, 1962; p. 456. [Google Scholar]
- EN ISO 717-1:2020; Acoustics—Rating of Sound Insulation in Buildings and of Building Elements—Part 1: Airborne Sound Insulation. ISO: Geneva, Switzerland, 2020.
- Wang, Q.; He, J.; Sun, J.; Ho, J. Determining the specific surface area of coarse aggregate based on sieving curve via image-analysis approach. Constr. Build. Mater. 2021, 305, 124728. [Google Scholar] [CrossRef]
- ISO 527-1:2019; Plastics—Determination of Tensile Properties—Part 1: General Principles. ISO: Geneva, Switzerland, 2019.
- Ljunggren, F. Sound insulation prediction of single and double CLT panels. In Proceedings of the 23rd International Congress on Acoustics, Aachen, Germany, 9–13 September 2019. [Google Scholar]
Mix | Sample Thickness (mm) | Rubber Grain Size (mm) | Glue Content (kg per 1 m3) | Rubber Content (kg per 1 m3) | Glue-to-Rubber Ratio (%) | Density (kg/m3) | Panel Mass (kg/m2) |
---|---|---|---|---|---|---|---|
1 | 10 | 0.5–2 | 46.5 | 1053.50 | 4.41 | 1100 | 11.0 |
2 | 10 | 2–3.5 | 46.5 | 1053.50 | 4.41 | 1100 | 11.0 |
3 | 10 | 0.5–2 (35%) + 2–3.5 (65%) | 46.5 | 1053.50 | 4.41 | 1100 | 11.0 |
4 | 15 | 0.5–2 | 31.67 | 718.33 | 4.41 | 750 | 11.25 |
5 | 15 | 2–3.5 | 31.67 | 718.33 | 4.41 | 750 | 11.0 |
6 | 15 | 0.5–2 (35%) + 2–3.5 (65%) | 31.67 | 718.33 | 4.41 | 750 | 11.0 |
7 | 20 | 0.5–2 | 42.90 | 542.10 | 7.91 | 585 | 11.7 |
8 | 20 | 2–3.5 | 42.90 | 542.10 | 7.91 | 585 | 11.0 |
9 | 20 | 0.5–2 (35%) + 2–3.5 (65%) | 42.90 | 542.10 | 7.91 | 585 | 11.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimbola, Z.; Crnoja, A.; Barišić, I.; Netinger Grubeša, I. Evaluation of the Applicability of Waste Rubber in Insulation Panels with Regard to Its Grain Size and Panel Thickness. Materials 2024, 17, 5251. https://doi.org/10.3390/ma17215251
Cimbola Z, Crnoja A, Barišić I, Netinger Grubeša I. Evaluation of the Applicability of Waste Rubber in Insulation Panels with Regard to Its Grain Size and Panel Thickness. Materials. 2024; 17(21):5251. https://doi.org/10.3390/ma17215251
Chicago/Turabian StyleCimbola, Zdravko, Anđelko Crnoja, Ivana Barišić, and Ivanka Netinger Grubeša. 2024. "Evaluation of the Applicability of Waste Rubber in Insulation Panels with Regard to Its Grain Size and Panel Thickness" Materials 17, no. 21: 5251. https://doi.org/10.3390/ma17215251
APA StyleCimbola, Z., Crnoja, A., Barišić, I., & Netinger Grubeša, I. (2024). Evaluation of the Applicability of Waste Rubber in Insulation Panels with Regard to Its Grain Size and Panel Thickness. Materials, 17(21), 5251. https://doi.org/10.3390/ma17215251