Machine Learning-Based Prediction of the Adsorption Characteristics of Biochar from Waste Wood by Chemical Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production and Analysis of Biochar-Activated Carbon
2.2. Data Collection and Preprocessing
2.3. Model Optimization and Evaluation
2.4. Model Selection and Interpretation
3. Results and Discussion
3.1. The Adsorption Properties of Biochar-Activated Carbon
3.2. Data Analysis and Pre-Processing
3.3. Performance of Optimized Models
3.4. Variable Importance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawano, T.; Kubota, M.; Onyango, M.S.; Watanabe, F.; Matsuda, H. Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Appl. Therm. Eng. 2008, 288–289, 865–871. [Google Scholar] [CrossRef]
- Ahmadpour, A.; Do, D.D. The preparation of active carbons from coal by chemical and physical activation. Carbon 1996, 344, 471–479. [Google Scholar] [CrossRef]
- Shoaib, M.; Al-Swaidan, H.M. Optimization and characterization of sliced activated carbon prepared from date palm tree fronds by physical activation. Biomass Bioenergy 2015, 73, 124–134. [Google Scholar] [CrossRef]
- Januszewicz, K.; Kazimierski, P.; Klein, M.; Kardaś, D.; Łuczak, J. Activated carbon produced by pyrolysis of waste wood and straw for potential wastewater adsorption. Materials 2020, 139, 2047. [Google Scholar] [CrossRef] [PubMed]
- Global activated carbon market forecast to 2034: Focus on application, end-use industry, activated carbon type, raw material, and region. Focus Catal. 2024, 20247, 2–3. [CrossRef]
- Activated Carbon Market Forecast to 2028—Global Analysis by Type and Application. Focus Catal. 2024, 20241, 3.
- Hokkanen, S.; Bhatnagar, A.; Sillanpää, M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 2016, 91, 156–173. [Google Scholar] [CrossRef]
- Azmi, N.Z.M.; Buthiyappan, A.; Raman, A.A.A.; Patah, M.F.A.; Sufian, S. Recent advances in biomass based activated carbon for carbon dioxide capture—A review. J. Ind. Eng. Chem. 2022, 116, 1–20. [Google Scholar] [CrossRef]
- Somer, M.E.; Alkhayat, O. A Study on Wood Waste Potential in Turkey. Clean. Waste Syst. 2024, 8, 100151. [Google Scholar] [CrossRef]
- Goldhahn, C.; Cabane, E.; Chanana, M. Sustainability in wood materials science: An opinion about current material development techniques and the end of lifetime perspectives. Philos. Trans. R. Soc. A 2021, 379, 20200339. [Google Scholar] [CrossRef]
- Faraca, G.; Tonini, D.; Astrup, T.F. Dynamic accounting of greenhouse gas emissions from cascading utilisation of wood waste. Sci. Total Environ. 2019, 651, 2689–2700. [Google Scholar] [CrossRef]
- Zbair, M.; Drané, M.; Limousy, L. NO2 Adsorption on Biochar Derived from Wood Shaving Litter: Understanding Surface Chemistry and Adsorption Mechanisms. Clean Technol. 2024, 63, 973–993. [Google Scholar] [CrossRef]
- Marcuello, C.; Foulon, L.; Chabbert, B.; Aguié-Béghin, V.; Molinari, M. Atomic force microscopy reveals how relative humidity impacts the Young’s modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale. Int. J. Biol. Macromol. 2020, 147, 1064–1075. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Kim, H.; Park, J.H.; Wi, S.; Kim, S. Evaluation of thermal properties and acetaldehyde adsorption performance of sustainable composites using waste wood and biochar. Environ. Res. 2021, 196, 110910. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.T. Adsorbents: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Won, M.H.; Cho, W.R.; Chang, J.M.; Lee, J.Y. Adsorption Characteristics of Biochar from Wood Waste by KOH, NaOH, ZnCl2 Chemical Activation. Clean Technol. 2023, 294, 272–278. [Google Scholar]
- Won, M.H.; Cho, W.R.; Chang, J.M.; Park, J.S.; Lee, J.-Y. Characterization of Waste Wood Biochar-Based Activated Carbon Synthesized by Hydrothermal Carbonization. Korea Soc. Waste Manag. 2022, 393, 280–289. [Google Scholar] [CrossRef]
- Mullainathan, S.; Spiess, J. Machine Learning: An Applied Econometric Approach. J. Econ. Perspect. 2017, 312, 87–106. [Google Scholar] [CrossRef]
- Aftab, R.A.; Zaidi, S.; Danish, M.; Ansari, K.B.; Danish, M. Novel Machine Learning (ML) models for predicting the performance of multi-metal binding green adsorbent for the removal of Cd (II), Cu (II), Pb (II) and Zn (II) ions. Environ. Adv. 2022, 9, 100256. [Google Scholar] [CrossRef]
- Souza, P.R.; Dotto, G.L.; Salau, N.P.G. Artificial neural network (ANN) and adaptive neuro-fuzzy interference system (ANFIS) modelling for nickel adsorption onto agr0o-wastes and commercial activated carbon. J. Environ. Chem. Eng. 2018, 66, 7152–7160. [Google Scholar] [CrossRef]
- Jiang, W.; Xing, X.; Li, S.; Zhang, X.; Wang, W. Synthesis, characterization and machine learning based performance prediction of straw activated carbon. J. Clean. Prod. 2019, 212, 1210–1223. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, W.; Jiang, G.; Zhang, T.; He, K.; Mu, L.; Lu, X. Machine Learning Prediction of the Yield and BET Area of Activated Carbon Quantitatively Relating to Biomass Compositions and Operating Conditions. Ind. Eng. Chem. Res. 2023, 6228, 11016–11031. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. A Eur. J. 2009, 1516, 4195–4203. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, M.; Fuertes, A.B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009, 479, 2281–2289. [Google Scholar] [CrossRef]
- Sun, Y.; Webley, P.A. Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chem. Eng. J. 2010, 1623, 883–892. [Google Scholar] [CrossRef]
- Fu, Y.; Shen, Y.; Zhang, Z.; Ge, X.; Chen, M. Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci. Total Environ. 2019, 646, 1567–1577. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Q.; Chen, F. Preparation and characterization of activated carbon from waste ramulus mori. Chem. Eng. J. 2012, 203, 19–24. [Google Scholar] [CrossRef]
- Nowrouzi, M.; Younesi, H.; Bahramifar, N. High efficient carbon dioxide capture onto as-synthesized activated carbon by chemical activation of Persian Ironwood biomass and the economic pre-feasibility study for scale-up. J. Clean. Prod. 2017, 168, 499–509. [Google Scholar] [CrossRef]
- ASTM D 4607; Standard Test Method for Determination of Iodine Number of Activated Carbon. ASTM: West Conshohocken, PA, USA, 2021.
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow Farnham; O’Reilly Media, Inc.: Montreal, QC, Canada, 2019. [Google Scholar]
- Chollet, F. Deep Learning with Python; Simon and Schuster: New York, NY, USA, 2017. [Google Scholar]
- Zhang, T.; Cao, D.; Feng, X.; Zhu, J.; Lu, X.; Mu, L.; Qian, H. Machine learning prediction of bio-oil characteristics quantitatively relating to biomass compositions and pyrolysis conditions. Fuel 2022, 312, 122812. [Google Scholar] [CrossRef]
- Olafasakin, O.; Chang, Y.; Passalacqua, A.; Subramaniam, S.; Brown, R.C.; Wright, M.M. Machine learning reduced order model for cost and emission assessment of a pyrolysis system. Energy Fuels 2021, 3512, 9950–9960. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Girgis, B.S.; Yunis, S.S.; Soliman, A.M. Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Mater. Lett. 2002, 571, 164–172. [Google Scholar] [CrossRef]
- Marsh, H.; Crawford, D.; O’Grady, T.M.; Wennerberg, A. Carbons of high surface area. A study by adsorption and high resolution electron microscopy. Carbon 1982, 205, 419–426. [Google Scholar] [CrossRef]
- Loredo-Cancino, M.; Soto-Regalado, E.; Cerino-Córdova, F.J.; García-Reyes, R.B.; García-León, A.M.; Garza-González, M.T. Determining optimal conditions to produce activated carbon from barley husks using single or dual optimization. J. Environ. Manag. 2013, 125, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.A.; Hameed, B.H. Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater. J. Hazard. Mater. 2010, 1731, 487–493. [Google Scholar] [CrossRef]
- Caturla, F.; Molina-Sabio, M.; Rodríguez-Reinoso, F. Preparation of activated carbon by chemical activation with ZnCl2. Carbon 1991, 297, 999–1007. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Molina-Sabio, M.; Rodríguez-Reinoso, F. Modification of the porous structure along the preparation of activated carbon monoliths with H3PO4 and ZnCl2. Microporous Mesoporous Mater. 2007, 1031, 29–34. [Google Scholar] [CrossRef]
- Su, G.; Jiang, P. Machine learning models for predicting biochar properties from lignocellulosic biomass torrefaction. Bioresour. Technol. 2024, 399, 130519. [Google Scholar] [CrossRef]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 2017, 273, 659–678. [Google Scholar] [CrossRef]
Categories | Conditions |
---|---|
Agent of chemical activation | KOH, NaOH, ZnCl2 |
Ratio of chemical activation (agent/biochar) | 0.5, 1, 1.5 |
Activation Temperature (°C) | 600, 700, 750, 800 |
Activation Time (min) | 30, 60, 90 |
Model | Hyperparameter | Values |
---|---|---|
ANN | Hidden Layers | 1, 2, 3 |
Neurons | 32, 64, 128, 256, 512 | |
Activation Function | identity, logistic, tanh, relu | |
Solver | Lbfgs, sgd, adam | |
Max Iteration | 500, 1000, 1500, 2000 | |
Alpha (min, max, step) | 0.0001, 1, 0.00001 | |
Learning Rate (min, max, step) | 0.001, 1, 0.0001 | |
RF | N_estimators (min, max, step) | 10, 100, 1 |
Max_depth (min, max, step) | 2, 11, 1 | |
Min_samples_leaf (min, max, step) | 2, 20, 1 | |
Min_samples_split (min, max, step) | 2, 20, 1 | |
Max_features | sqrt, log2, None | |
SVM | C (min, max, step) | 0.01, 10, 0.001 |
Kernel | linear, poly, rbf | |
Degree (min, max, step) | 1, 10, 1 | |
Epsilon (min, max, step) | 0.1, 0.5, 0.01 | |
Gamma | 10−4, 10−3, 10−2, 0.1, 1, 10 102, 103, 104 | |
XGB | Max_depth (min, max, step) | 3, 11, 1 |
Learning_rate (min, max, step) | 0.001, 1, 0.001 | |
Gamma | 0, 10−5, 10−4, 10−3, 10−2, 0.1, 1 | |
Subsample (min, max, step) | 0.1, 0.5, 0.05 | |
Colsample_bytree (min, max, step) | 0.2, 1, 0.05 | |
Min_child_weight (min, max, step) | 1, 10, 1 | |
N_estimators (min, max, step) | 10, 100, 1 |
Model | Hyperparameter | Values | Model | Hyperparameter | Values |
---|---|---|---|---|---|
ANN | Hidden Layers | 2 | XGB | Max_depth | 6 |
Neurons | 128 for each layer | Learning_rate | 0.12 | ||
Activation Function | relu | Gamma | 10−5 | ||
Solver | lbfgs | Subsample | 0.45 | ||
Max Iteration | 2000 | Colsample_bytree | 0.85 | ||
Alpha | 0.00017 | Min_child_weight | 1.0 | ||
Learning Rate | 0.0039 | N_estimators | 71 | ||
RF | N_estimators | 75 | SVM | C | 1.256 |
Max_depth | 11 | Kernel | rbf | ||
Min_samples_leaf | 2 | Degree | 4 | ||
Min_samples_split | 4 | Epsilon | 0.11 | ||
Max_features | sqrt | Gamma | 1 |
Model | Train | Test | ||
---|---|---|---|---|
LR | 0.016273 | 0.85 | 0.017629 | 0.81 |
ANN | 0.000065 | 0.99 | 0.004017 | 0.96 |
RF | 0.003661 | 0.97 | 0.009092 | 0.90 |
SVM | 0.006656 | 0.94 | 0.008833 | 0.90 |
XGB | 0.000877 | 0.99 | 0.005415 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.; Lee, J.-Y. Machine Learning-Based Prediction of the Adsorption Characteristics of Biochar from Waste Wood by Chemical Activation. Materials 2024, 17, 5359. https://doi.org/10.3390/ma17215359
Chang J, Lee J-Y. Machine Learning-Based Prediction of the Adsorption Characteristics of Biochar from Waste Wood by Chemical Activation. Materials. 2024; 17(21):5359. https://doi.org/10.3390/ma17215359
Chicago/Turabian StyleChang, Jinman, and Jai-Young Lee. 2024. "Machine Learning-Based Prediction of the Adsorption Characteristics of Biochar from Waste Wood by Chemical Activation" Materials 17, no. 21: 5359. https://doi.org/10.3390/ma17215359
APA StyleChang, J., & Lee, J. -Y. (2024). Machine Learning-Based Prediction of the Adsorption Characteristics of Biochar from Waste Wood by Chemical Activation. Materials, 17(21), 5359. https://doi.org/10.3390/ma17215359