Ultra-Short Pulses Laser Heating of Dielectrics: A Semi-Classical Analytical Model
Abstract
:1. Introduction
2. Analytical Model
2.1. Solving Free Electron Density
- (a)
- (b)
- = , which is the case reported by Jiang et al. [30].
2.2. Two Temperatures Model
3. Model Application and Validity: Sample Cases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prokhorov, A.M.; Konov, V.I.; Ursu, I.; Mihailescu, I.N. Laser Heating of Metals; Institute of Physics Publishing: Bristol, UK, 1990; pp. 1–240. ISBN 978-0750300407. [Google Scholar]
- Nelea, V.; Ristoscu, C.; Chiritescu, C.; Ghica, C.; Mihailescu, I.N.; Pelletier, H.; Mille, P.; Cornet, A. Pulsed laser deposition of hydroxyapatite thin films on Ti-5Al-2.5Fe substrates with and without buffer layers. Appl. Surf. Sci. 2000, 168, 127–131. [Google Scholar] [CrossRef]
- Steen, W.M.; Mazumder, J. Laser Material Processing, 4th ed.; Springer: London, UK, 2010. [Google Scholar] [CrossRef]
- Li, X.; Guan, Y. Theoretical fundamentals of short pulse laser–metal interaction: A review. Nanotechnol. Precis. Eng. 2020, 3, 105–125. [Google Scholar] [CrossRef]
- Vaghasiya, H.; Krause, S.; Miclea, P.T. Fundamental study of ablation mechanisms in crystalline silicon and gold by femtosecond laser pulses: Classical approach of two-temperature model. Advances in Ultrafast Condensed Phase Physics III. Proc. SPIE 2022, 1213206. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, X. Numerical investigation of ultrashort laser interaction with dielectric materials based on a plasma-temperature combined model. 45th SME North American Manufacturing Research Conference, NAMRC 45, LA, USA. J. Manuf. Process. 2017, 28, 508–514. [Google Scholar] [CrossRef]
- Ramachandran, K.I.; Deepa, G.; Namboori, K. Computational Chemistry and Molecular Modeling: Principles and Applications; Springer: Berling, Germany, 2008; ISBN 978-3-540-77302-3. [Google Scholar]
- Keanini, R.G.; Tkacik, P.T.; Fleischhauer, E.; Shahinian, H.; Sholar, J.; Azimi, F.; Mullany, B. Macroscopic liquid-state molecular hydrodynamics. Sci. Rep. 2017, 7, 41658. [Google Scholar] [CrossRef]
- del Moral, P. Mean Field Simulation for Monte Carlo Integration: Monographs on Statistics and Applied Probability, 1st ed.; CRC Press: Boca Raton, FL, USA, 2013; ISBN 978-1-4665-0405-2. [Google Scholar]
- Zhukovsky, K.V. and Dattoli G. Evolution of non-spreading Airy wavepackets in time dependent linear potentials. Appl. Math. Comput. 2011, 217, 7966. [Google Scholar] [CrossRef]
- Cotta, R.M.; Mikhailov, M.D. Integral transform method. Appl. Math. Model. 1993, 17, 156–161. [Google Scholar] [CrossRef]
- Wang, K.G.; Dong, L.K.; Wu, X.F.; Zhu, F.W.; Ko, T. Correlation effects, generalized Brownian motion and anomalous diffusion. Physica A 1994, 203, 53–60. [Google Scholar] [CrossRef]
- Oane, M.; Taca, M.; Tsao, S.L. Two Temperature Models for Metals: A New “Radical” Approach. Laser. Eng. 2012, 24, 105–113. [Google Scholar]
- Anisimov, S.I.; Kapeliovich, B.L.; Perel’man, T.L. Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 1974, 39, 375–377. [Google Scholar]
- Guo, B.; Sun, J.; Hua, Y.; Zhan, N.; Jia, J.; Chu, K. Femtosecond Laser Micro/Nano-manufacturing: Theories, Measurements, Methods, and Applications. Nanomanuf. Metrol. 2020, 3, 26–67. [Google Scholar] [CrossRef]
- Cai, X.; Ji, C.; Li, C.; Tian, Z.; Wang, X.; Lei, C.; Liu, S. Multiphoton Absorption Simulation of Sapphire Substrate under the Action of Femtosecond Laser for Larger Density of Pattern-Related Process Windows. Micromachines 2021, 12, 1571. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Mei, W.; Wang, Y. Simulation of femtosecond laser ablation sapphire based on free electron density. Opt. Laser. Technol. 2019, 113, 123–128. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; ISBN 0-471-41526-X. [Google Scholar]
- Kaiser, A.; Rethfeld, B.; Vicanek, M.; Simon, G. Microscopic processes in dielectrics under irradiation by sub picosecond laser pulses. Phys. Rev. B 2000, 61, 11437. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, A.D.; Li, B.; Cui, T.H.; Lu, Y.F. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: Modeling, method, measurement and application. Light Sci. Appl. 2018, 7, 17134. [Google Scholar] [CrossRef]
- Feit, M.D.; Komashko, A.M.; Rubenchik, A.M. Ultra-Short Pulse Laser Interaction with Transparent Dielectrics. Appl. Phys. A 2004, 79, 1657. [Google Scholar] [CrossRef]
- Rosenfeld, A.; Lorenz, M.; Stoian, R.; Ashkenasi, D. Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation. Appl. Phys. A 1999, 69, 373–376. [Google Scholar] [CrossRef]
- Stoian, R.; Ashkenasi, D.; Rosenfeld, A.; Campbell, E.E.B. Coulomb explosion in ultrashort pulsed laser ablation of Al2O3. Phys. Rev. B 2000, 62, 13167. [Google Scholar] [CrossRef]
- Stoian, R.; Rosenfeld, A.; Ashkenasi, D.; Hertel, I.V.; Bulgakova, N.M.; Campbell, E.E.B. Surface Charging and Impulsive Ion Ejection during Ultrashort Pulsed Laser Ablation. Phys. Rev. Lett. 2002, 88, 097603. [Google Scholar] [CrossRef]
- Bulgakova, N.M.; Stoian, R.; Rosenfeld, A.; Hertel, I.V.; Campbell, E.E.B. Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials. Phys. Rev. B 2004, 69, 054102. [Google Scholar] [CrossRef]
- Costache, F.; Reif, J. Femtosecond laser induced Coulomb explosion from calcium fluoride. Thin Solid Films 2004, 334, 453–454. [Google Scholar] [CrossRef]
- Reif, J.; Costache, F.; Eckert, S.; Henyk, M. Mechanisms of ultra-short laser pulse ablation from ionic crystals. Appl. Phys. A 2004, 79, 1229. [Google Scholar] [CrossRef]
- Mao, S.S.; Quéré, F.; Guizard, S.; Mao, X.; Russo, R.E.; Petite, G.; Martin, P. Dynamics of femtosecond laser interactions with dielectrics. Appl. Phys. A 2004, 79, 1695. [Google Scholar] [CrossRef]
- Fa, K.S. Exact solution of the Fokker-Planck equation for a broad class of diffusion coefficients. Phys. Rev. E 2005, 72, 020101R. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Tsai, H.L. A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics. J. Appl. Phys. 2008, 104, 093101. [Google Scholar] [CrossRef]
- Zhukovsky, K.V. Solving evolutionary-type differential equations and physical problems using the operator method. Theor. Math. Phys. 2017, 190, 52–68. [Google Scholar] [CrossRef]
- Zhukovsky, K. Operational Approach and Solutions of Hyperbolic Heat Conduction Equations. Axioms 2016, 5, 28. [Google Scholar] [CrossRef]
- Loboda, P.A.; Smirnov, N.A.; Shadrin, A.A.; Karlykhanov, N.G. Simulation of absorption of femtosecond laser pulses in solid-density copper. High Energy Density Phys. 2011, 7, 361–370. [Google Scholar] [CrossRef]
- Chen, J.K.; Tzou, D.Y.; Beraun, J.E. A semiclassical two-temperature model for ultrafast laser heating. Int. J. Heat Mass Transf. 2006, 49, 307–316. [Google Scholar] [CrossRef]
- Petrov, G.M.; Davidson, A.; Gordon, D.; Peñano, J. Modeling of short-pulse laser-metal interactions in the warm dense matter regime using the two-temperature model. Phys. Rev. E 2021, 103, 033204. [Google Scholar] [CrossRef]
- Liao, B.; Zhou, J.; Chen, G. Generalized Two-Temperature Model for Coupled Phonon-Magnon Diffusion. Phys. Rev. Lett. 2014, 113, 025902. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulou, V.E.; Markopoulos, A.P. A Critical Assessment Regarding Two-Temperature Models: An Investigation of the Different Forms of Two-Temperature Models, the Various Ultrashort Pulsed Laser Models and Computational Methods. Arch. Comput. Methods Eng. 2024, 31, 93–123. [Google Scholar] [CrossRef]
- Nicarel, A.; Oane, M.; Mihăilescu, I.N.; Ristoscu, C. Fourier two-temperature model to describe ultrafast laser pulses interaction with metals. A novel mathematical technique. Phys. Lett. A 2021, 392, 15. [Google Scholar] [CrossRef]
- El Sharkawy, A.A.; Dessouky, M.T.; Abousehly, A.M.; Raafat, A. Thermal Properties Investigation of Inhomogeneous Ternary Alloy (Se–Te–S) Using Flash Method Technique. Int. J. Thermophys. 2020, 41, 25. [Google Scholar] [CrossRef]
- Anghel, S.-A.; Oane, M.; Mihăilescu, C.N.; Sava, B.A.; Elişa, M.; Mihăilescu, N.; Ticoş, D.; Trefilov, A.M.I.; Ristoscu, C.; Filip, A.V.; et al. Thermal Lattice Field during Ultra-Short Laser Pulse Irradiation of Metal Targets: A Fokker–Planck Analytical Model. Metals 2023, 13, 1775. [Google Scholar] [CrossRef]
- Guk, I.; Shandybina, G.; Yakovlev, E. Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses. Appl. Surf. Sci. 2015, 353, 851–855. [Google Scholar] [CrossRef]
- Stuart, B.C.; Feit, M.D.; Rubenchick, A.M.; Shore, B.W.; Perry, M.D. Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses. Phys. Rev. Lett. 1995, 74, 2248–2251. [Google Scholar] [CrossRef]
- Gamaly, E.G.; Juodkazis, S.; Nishimura, K.; Misawa, H.; Luther-Davies, B.; Hallo, L.; Nicolaï, P.; Tikhonchuk, V.T. Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation. Phys. Rev. B 2006, 73, 214101. [Google Scholar] [CrossRef]
- Roh, I.I.; Goh, S.H.; Meng, Y.; Kim, J.S.; Han, S.; Xu, Z.; Lee, H.E.; Kim, Y.; Bae, S.H. Applications of remote epitaxy and van der Waals epitaxy. Nano Converg. 2023, 10, 20. [Google Scholar] [CrossRef]
- Bulgakova, N.M.; Zhukov, V.P.; Meshcheryakov, Y.P.; Gemini, L.; Brajer, J.; Rostohar, D.; Mocek, T. Pulsed laser modification of transparent dielectrics: What can be foreseen and predicted by numerical simulations? JOSA B 2014, 31, C8–C14. [Google Scholar] [CrossRef]
Symbol | Name of the Physical Quantity | International Unit of Measurement |
---|---|---|
ne | Free electron density | m−3 |
λ | Laser wavelength | nm |
τ | Time constant of electron diffusion | s |
tc | Electrons collision time | fs |
I | Laser power density | W/m2 |
αabs | Laser absorption coefficient | m−1 |
σ | Avalanche ionization cross-section coefficient | cm2 |
r0 | Laser spot radius | m |
R | Sapphire surface reflectance | % |
Eg | Band gap | eV |
m | m-multiphoton number | Real number |
αi | Avalanche ionization coefficient | m2/J |
δm (8 photons) | Multiphoton absorption coefficient | m−3 s−1 (W/m2)−8 |
δm (6 photons) | Multiphoton absorption coefficient | m−3 s−1 (W/m2)−6 |
X | Cartesian Space Coordinate | m |
Y | Cartesian Space Coordinate | m |
Z | Cartesian Space Coordinate | m |
T | Temperature | K |
t | Time | s |
Ff | Laser peak energy density | J/m2 |
tpf | Femtosecond laser pulse duration | s |
Ce | Electron specific heat | J/(K·m3) |
Ke | Electronic thermal conductivity | W/(m·K) |
Τe | Electron temperature | K |
Tp | Lattice temperature | K |
g | Electron–lattice coupling coefficient | W/(m3·K) |
Q | Laser thermal fluence | W/m3 |
Φ | Fourier coefficient (−1/ τ) | s−1 |
ψ | Fourier coefficient (thermal diffusivity) | m2/s |
ζ | Increment real number | Real number |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badea, L.; Duta, L.; Mihailescu, C.N.; Oane, M.; Trefilov, A.M.I.; Popescu, A.; Hapenciuc, C.; Mahmood, M.A.; Ticos, D.; Mihailescu, N.; et al. Ultra-Short Pulses Laser Heating of Dielectrics: A Semi-Classical Analytical Model. Materials 2024, 17, 5366. https://doi.org/10.3390/ma17215366
Badea L, Duta L, Mihailescu CN, Oane M, Trefilov AMI, Popescu A, Hapenciuc C, Mahmood MA, Ticos D, Mihailescu N, et al. Ultra-Short Pulses Laser Heating of Dielectrics: A Semi-Classical Analytical Model. Materials. 2024; 17(21):5366. https://doi.org/10.3390/ma17215366
Chicago/Turabian StyleBadea, Liviu, Liviu Duta, Cristian N. Mihailescu, Mihai Oane, Alexandra M. I. Trefilov, Andrei Popescu, Claudiu Hapenciuc, Muhammad Arif Mahmood, Dorina Ticos, Natalia Mihailescu, and et al. 2024. "Ultra-Short Pulses Laser Heating of Dielectrics: A Semi-Classical Analytical Model" Materials 17, no. 21: 5366. https://doi.org/10.3390/ma17215366
APA StyleBadea, L., Duta, L., Mihailescu, C. N., Oane, M., Trefilov, A. M. I., Popescu, A., Hapenciuc, C., Mahmood, M. A., Ticos, D., Mihailescu, N., Ristoscu, C., Anghel, S. A., & Mihailescu, I. N. (2024). Ultra-Short Pulses Laser Heating of Dielectrics: A Semi-Classical Analytical Model. Materials, 17(21), 5366. https://doi.org/10.3390/ma17215366