Coupling CALPHAD Method and Entropy-Driven Design for the Development of an Advanced Lightweight High-Temperature Al-Ti-Ta Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. CALPHAD-Type Calculations
3.2. Phase and Thermal Characterization
3.3. Microstructure and Compositional Analysis
3.4. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pollock, T.M. Alloy design for aircraft engines. Nat. Mater. 2016, 15, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Campbell, F., Jr. (Ed.) Manufacturing Technology for Aerospace Structural Materials; Elsevier Science: Oxford, UK, 2006. [Google Scholar]
- Campbell, F., Jr. (Ed.) Chapter 4—Titanium. In Manufacturing Technology for Aerospace Structural Materials; Elsevier Science: Oxford, UK, 2006; pp. 119–174. [Google Scholar]
- Bai, J.; Yang, Y.; Wen, C.; Chen, J.; Zhou, G.; Jiang, B.; Peng, X.; Pan, F. Applications of magnesium alloys for aerospace: A review. J. Magnes. Alloys 2023, 11, 3609–3619. [Google Scholar] [CrossRef]
- Fuller, C.B.; Siedman, D.N.; Dunand, D.C. Mechanical properties of Al3(Sc,Zr) alloys at ambient and elevated temperatures. Acta. Mater. 2003, 51, 4803–4814. [Google Scholar] [CrossRef]
- Knipling, K.E.; Siedman, D.N.; Dunand, D.C. Ambient and high temperature mechanical properties of isochronally aged Al–0.06Sc, Al–0.06Zr and Al–0.06Sc–0.06Zr (at. %) alloys. Acta. Mater. 2011, 59, 943–954. [Google Scholar] [CrossRef]
- Riva, S.V.; Yusenko, K.V.; Lavery, N.P.; Jarvis, D.J.; Brown, S.G.R. The scandium effect in multicomponent alloys. Int. Mater. Rev. 2016, 61, 203. [Google Scholar] [CrossRef]
- Dalen, M.E.; Karnesky, R.A.; Cabotage, J.R.; Dunand, D.C.; Siedman, D.N. Erbium and ytterbium solubilities and diffusivities in aluminum as determined by nanoscale characterization of precipitates. Acta. Mater. 2009, 57, 4081–4089. [Google Scholar] [CrossRef]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Criteria for developing castable creep resistant aluminium-based alloys—A Review. Z. Metallkd. 2006, 97, 246–265. [Google Scholar] [CrossRef]
- Liu, K.; Ma, H.; Chen, X.G. Enhanced elevated-temperature properties via Mo addition in Al-Mn-Mg 3004 alloy. J. Alloys Compd. 2017, 694, 354–365. [Google Scholar] [CrossRef]
- Qian, F.; Jin, S.; Sha, G.; Li, Y. Enhanced dispersoid precipitation and dispersion strengthening in an Al alloy by microalloying with Cd. Acta Mater. 2018, 157, 114–125. [Google Scholar] [CrossRef]
- Davis, J.R. Aluminum and Aluminum Alloys; ASM International: Almere, The Netherlands, 1993. [Google Scholar]
- Hernandez-Sandoval, J.; Garza-Elizondo, G.H.; Samuel, A.M.; Valtiierra, S.; Samuel, F.H. The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions. Mater. Des. 2014, 58, 89–101. [Google Scholar] [CrossRef]
- Kasprzak, W.; Amirkhiz, B.S.; Niewczas, M. Structure and properties of cast Al–Si based alloy with Zr–V–Ti additions and its evaluation of high temperature performance. J. Alloys Compd. 2014, 595, 67–79. [Google Scholar] [CrossRef]
- Shaha, S.K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D.L. Ageing characteristics and high-temperature tensile properties of Al–Si–Cu–Mg alloys with micro-additions of Mo and Mn. Mater. Sci. Eng. A 2017, 684, 726–736. [Google Scholar] [CrossRef]
- Shyam, A.; Roy, S.; Shin, D.; Poplawsky, J.D.; Allard, L.F.; Yamamoto, Y.; Morris, J.R.; Mazumder, B.; Idrobo, J.C.; Rodriguez, A.; et al. Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation. Mater. Sci. Eng. A 2019, 765, 138279. [Google Scholar] [CrossRef]
- Mundhra, G.; Hariharan, V.S.; Murty, B.S. Design of a novel Al-Ti-Zr lightweight alloy: Calphad and experiments. J. Alloys Compd. 2020, 835, 155304. [Google Scholar] [CrossRef]
- Mundhra, G.; Peng, H.E.; Yeh, J.W.; Murty, B.S. CALPHAD-guided design and experimental study on a novel Al-Ti-Nb alloy. J. Alloys Compd. 2024, 990, 174288. [Google Scholar] [CrossRef]
- Mundhra, G.; Yeh, J.W.; Murty, B.S. Development of an Al–Ti–Hf Composite Alloy Strengthened with High Volume Fraction of In-situ formed Al3(Ti, Hf)-Type Trialuminide Intermetallic Phase. Trans. Indian Inst. Met. 2024, 77, 3121–3132. [Google Scholar] [CrossRef]
- Gambaro, S.; Fenocchio, L.; Valenza, F.; Riani, P.; Cacciamani, G. Combined experimental and CALPHAD investigation of equimolar AlCoCrFeNiX (X = Mo,Ta,W) High-Entropy Alloys. Calphad 2024, 85, 102702. [Google Scholar] [CrossRef]
- Jung, J.G.; Cho, Y.H.; Lee, J.M.; Kim, H.W.; Euh, K. Designing the composition and processing route of aluminum alloys using CALPHAD: Case studies. Calphad 2019, 64, 236–247. [Google Scholar] [CrossRef]
- Witusiewicz, V.T.; Bondar, A.A.; Hecht, U.; Voblikov, V.M.; Fomichov, O.S.; Petyukh, V.M.; Rex, S. Experimental study, and thermodynamic modelling of the ternary Al–Ta–Ti system. Intermetallics 2011, 19, 234–259. [Google Scholar] [CrossRef]
- Thermo-Calc Software, Al-Based Alloys Database, Version 7. 2020. (n.d.) Available online: https://www.thermocalc.com/products-services/databases/thermodynamic (accessed on 16 August 2023).
- Sundman, B.; Jansson, B.; Andersson, J.O. The Thermo-Calc databank system. Calphad 1985, 9, 153–190. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Mundhra, G.; Chao, H.C.; Lee, Y.J.; Pradeep, K.G.; Yeh, J.W.; Murty, B.S. Entropy-Engineered Aluminum-Based Superalloys with Superior High-Temperature Mechanical Properties. Adv. Eng. Mater. 2024, 2401535. [Google Scholar] [CrossRef]
- Murty, B.S.; Yeh, J.W.; Ranganathan, S.; Bhattacharjee, P.P. High Entropy Alloys, 2nd ed.; Butterworth-Heinemann: London, UK, 2019. [Google Scholar]
- Hillert, M. Phase Equilibria, Phase Diagrams and Phase Transformations; Cambridge University Press: Cambridge, UK, 2007; Available online: www.cambridge.org/9780521853514 (accessed on 16 August 2023).
- Mohan, K.; Suresh, J.A.; Ramu, P.; Jayaganthan, R. Microstructure and mechanical behavior of Al 7075-T6 subjected to shallow cryogenic treatment. J. Mater. Eng. Perform. 2016, 25, 2185–2194. [Google Scholar] [CrossRef]
- Malek, P.; Janecek, M.; Smola, B. Structure and properties of melt-spun Al-Zr-Ti alloys, Microstructure, and microhardness stability at elevated temperatures. Kov. Mater. 2000, 38, 160–177. [Google Scholar]
- Cui, X.; Cui, H.; Wu, Y.; Liu, X. Surface modification of A390 alloy with CaB6 composite coating. J. Mater. Res. Technol. 2020, 9, 1405–1411. [Google Scholar] [CrossRef]
- Poondla, N.; Srivatsan, T.S.; Patnaik, A.; Petraroli, M. A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti-6Al-4V. J. Alloys Compd. 2009, 486, 162–167. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials Selection in Mechanical Design; Butterworth-Heinemann: London, UK, 2011. [Google Scholar]
SEM Image Analysis | CALPHAD Predictions | |||
---|---|---|---|---|
FCC (Al-Rich Black Phase) | T Phase (Al3(Ti,Ta) Bright Phase) | FCC | Al3(Ti,Ta) (HT) | |
As-cast | 53.3 ± 1.4 54.2 ± 0.9 @ | 47.1 ± 1.8 46.1 ± 1.1 @ | 49.3 # | 50.7 # |
Heat-treated | 49.1 ± 1.3 48.2 ± 1.1 @ | 50.9 ± 1.3 52.3 ± 1.4 @ | 49.9* | 50.1 * |
Condition | FCC | T Phase |
---|---|---|
As-cast | ||
Heat-treated |
Sample Condition | Composition Type | Al | Ti | Ta |
---|---|---|---|---|
As-cast | Design | 87.5 | 6.25 | 6.25 |
Experimental | 88.3 ± 1.1 | 5.9 ± 0.5 | 6.2 ± 0.6 | |
Heat-treated (@475 °C for 24 h) | Design | 87.5 | 6.25 | 6.25 |
Experimental | 87.8 ± 1.4 | 5.9 ± 0.4 | 6.2 ± 0.5 |
Condition | Phases | Composition | ||
---|---|---|---|---|
Al | Ti | Ta | ||
As-cast | Black (FCC) | 98.0 ± 0.9 | 1.5 ± 0.2 | 0.5 ± 0.1 |
Grey (T Phase) | 77.5 ± 0.6 | 10.1 ± 0.4 | 12.4 ± 0.5 | |
Heat-treated (475 °C, 24 h) | Black (FCC) | 97.1 ± 0.8 | 1.8 ± 0.4 | 1.0 ± 0.2 |
Grey (T Phase) | 77.9 ± 0.8 | 10.1 ± 0.7 | 12.2 ± 0.4 | |
Scheil Simulation @ 663.46 °C | FCC | 99.56 | 0.41 | 0.03 |
Al3(Ti,Ta)(HT) | 75.7 | 11.9 | 12.4 | |
Equilibrium Calculation @ 475 °C | FCC | 99.81 | 0.17 | 0.02 |
Al3(Ti,Ta)(HT) | 75.26 | 12.45 | 12.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mundhra, G.; Yeh, J.-W.; Murty, B.S. Coupling CALPHAD Method and Entropy-Driven Design for the Development of an Advanced Lightweight High-Temperature Al-Ti-Ta Alloy. Materials 2024, 17, 5373. https://doi.org/10.3390/ma17215373
Mundhra G, Yeh J-W, Murty BS. Coupling CALPHAD Method and Entropy-Driven Design for the Development of an Advanced Lightweight High-Temperature Al-Ti-Ta Alloy. Materials. 2024; 17(21):5373. https://doi.org/10.3390/ma17215373
Chicago/Turabian StyleMundhra, Gourav, Jien-Wei Yeh, and B. S. Murty. 2024. "Coupling CALPHAD Method and Entropy-Driven Design for the Development of an Advanced Lightweight High-Temperature Al-Ti-Ta Alloy" Materials 17, no. 21: 5373. https://doi.org/10.3390/ma17215373
APA StyleMundhra, G., Yeh, J. -W., & Murty, B. S. (2024). Coupling CALPHAD Method and Entropy-Driven Design for the Development of an Advanced Lightweight High-Temperature Al-Ti-Ta Alloy. Materials, 17(21), 5373. https://doi.org/10.3390/ma17215373