Physical–Mechanical Properties and Mineral Deposition of a Pit-and-Fissure Sealant Containing Niobium–Fluoride Nanoparticles—An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Preparation and Selection of Enamel Specimens and Caries-like Lesion Evidence
2.3. Treatment of Bovine Enamel Blocks with Resin Sealant Doped with NbF5
2.4. pH-Cycling Regimen
2.5. Surface Hardness (SH)
2.6. EDX Analysis
2.7. Mineral Deposition
2.8. Surface Roughness (Ra, µm)
2.9. Color Change (ΔE)
2.10. Statistical Analysis
3. Results
3.1. Mechanical Properties
3.2. Mineral Deposition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munteanu, A.; Holban, A.M.; Păuna, M.R.; Imre, M.; Farcașiu, A.T.; Farcașiu, C. Review of Professionally Applied Fluorides for Preventing Dental Caries in Children and Adolescents. Appl. Sci. 2022, 12, 1054. [Google Scholar] [CrossRef]
- Wright, J.T.; Tampi, M.P.; Graham, L.; Estrich, C.; Crall, J.J.; Fontana, M.; Gillette, E.J.; Nový, B.B.; Dhar, V.; Donly, K.; et al. Sealants for Preventing and Arresting Pit-and-fissure Occlusal Caries in Primary and Permanent Molars. Pediatr. Dent. 2016, 38, 282–308, Erratum in Pediatr Dent. 2017, 39, 100. [Google Scholar] [CrossRef] [PubMed]
- Junger, M.L.; Griffin, S.O.; Lesaja, S.; Espinoza, L. Awareness Among US Adults of Dental Sealants for Caries Prevention. Prev. Chronic Dis. 2019, 16, E29. [Google Scholar] [CrossRef] [PubMed]
- Behroozian, A.; Aghazadeh, Z.; Sadrabad, Z.K.; Aghazadeh, M.; Alizadeh, V.; Esmaili, Z.; Pirzadeh Ashraf, M. Evaluation of the success rate of pit and fissure sealants on first molars: 12 months follow-up study. Int. J. Dent. Hyg. 2022, 20, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, H.; Ashok, R.; Rajan, M.; Balaji, L.; Ganesh, A. Retention of pit and fissure sealants versus flowable composites in permanent teeth: A systematic review. Heliyon 2020, 6, e04964. [Google Scholar] [CrossRef]
- Faria, M.; Rompante, P.; Henriques, B.; Silva, F.S.; Özcan, M.; Souza, J.C.M. Degradation of Tooth Occlusal Fissure and Pit Sealants by Wear and Corrosion Pathways: A Short Review. J. Bio. Tribo. Corros. 2021, 7, 111. [Google Scholar] [CrossRef]
- Li, H.; Huang, Y.; Zhou, X.; Zhu, C.; Han, Q.; Wang, H.; Xu, H.H.K.; Ren, B.; Cheng, L. Intelligent pH-responsive dental sealants to prevent long-term microleakage. Dent. Mater. 2021, 37, 1529–1541. [Google Scholar] [CrossRef]
- Prabahar, T.; Chowdhary, N.; Konkappa, K.N.; Vundela, R.R.; Balamurugan, S. Evaluation of Microleakage of Different Types of Pit and Fissure Sealants: An In Vitro Comparative Study. Int. J. Clin. Pediatr. Dent. 2022, 15, 535–540. [Google Scholar] [CrossRef]
- Kritika, S.; Jothimani, B.; Vidhya, S.; Sanjeev, K.; Mahalaxmi, S.; Venkatachalapathy, B.; Sureshkumar, S. Incorporation of hydrophobic nanochitosan improves wear resistance of dental sealants. Int. J. Polym. Mater. Polym. Biomater. 2020, 70, 309–317. [Google Scholar] [CrossRef]
- Memarpour, M.; Abedinzade, A.; Rafiee, A.; Hashemian, A. Penetration ability and microhardness of infiltrant resin and two pit and fissure sealants in primary teeth with early enamel lesions. Sci. Rep. 2022, 12, 4652. [Google Scholar] [CrossRef]
- Surintanasarn, A.; Siralertmukul, K.; Thamrongananskul, N. Synthesized mesoporous silica and calcium aluminate cement fillers increased the fluoride recharge and lactic acid neutralizing ability of a resin-based pit and fissure sealant. Dent. Mater. J. 2017, 36, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Litman, A.; Margolis, H.C. Effect of fluoride on artificial caries lesion progression and repair in human enamel: Regulation of mineral deposition and dissolution under in vivo-like conditions. Arch. Oral. Biol. 2007, 52, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Li, Y.; Weir, M.D.; Baras, B.H.; Wang, H.; Wang, S.; Sun, J.; Melo, M.A.S.; Ruan, J.; Xu, H.H.K. Novel pit and fissure sealant containing nano-CaF2 and dimethylaminohexadecyl methacrylate with double benefits of fluoride release and antibacterial function. Dent. Mater. 2020, 36, 1241–1253. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.S.; Balhaddad, A.A.; Garcia, I.M.; Collares, F.M.; Weir, M.D.; Xu, H.H.K.; Melo, M.A.S. pH-responsive calcium and phosphate-ion releasing antibacterial sealants on carious enamel lesions in vitro. J. Dent. 2020, 97, 103323. [Google Scholar] [CrossRef]
- Xu, H.H.; Weir, M.D.; Sun, L. Calcium and phosphate ion releasing composite: Effect of pH on release and mechanical properties. Dent. Mater. 2009, 25, 535–542. [Google Scholar] [CrossRef]
- Chiari, M.D.; Rodrigues, M.C.; Xavier, T.A.; de Souza, E.M.; Arana-Chavez, V.E.; Braga, R.R. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles. Dent. Mater. 2015, 31, 726–733. [Google Scholar] [CrossRef]
- Obeid, A.T.; Garcia, L.H.A.; Nascimento, T.R.D.L.; Castellano, L.R.C.; Bombonatti, J.F.S.; Honório, H.M.; Mondelli, R.F.L.; Sauro, S.; Velo, M.M.A.C. Effects of hybrid inorganic-organic nanofibers on the properties of enamel resin infiltrants—An in vitro study. J. Mech. Behav. Biomed. Mater. 2022, 126, 105067. [Google Scholar] [CrossRef]
- Velo, M.M.A.C.; Filho, F.G.N.; de Lima Nascimento, T.R.; Obeid, A.T.; Castellano, L.C.; Costa, R.M.; Brondino, N.C.M.; Fonseca, M.G.; Silikas, N.; Mondelli, R.F.L. Enhancing the mechanical properties and providing bioactive potential for graphene oxide/montmorillonite hybrid dental resin composites. Sci. Rep. 2022, 12, 10259. [Google Scholar] [CrossRef]
- Braga, R.R. Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent. Mater. 2019, 35, 3–14. [Google Scholar] [CrossRef]
- Ferreira, I.; Alves, O.L.; Schiavon, M.A.; Reis, A.C.D. Influence of incorporation of nanostructured silver vanadate decorated with silver nanoparticles on roughness, microhardness, and color change of pit and fissure sealants. Heliyon 2024, 10, e25525. [Google Scholar] [CrossRef]
- Velo, M.M.A.C.; Nascimento, T.R.L.; Scotti, C.K.; Bombonatti, J.F.S.; Furuse, A.Y.; Silva, V.D.; Simões, T.A.; Medeiros, E.S.; Blaker, J.J.; Silikas, N.; et al. Improved mechanical performance of self-adhesive resin cement filled with hybrid nanofibers-embedded with niobium pentoxide. Dent. Mater. 2019, 35, e272–e285. [Google Scholar] [CrossRef] [PubMed]
- Obeid, A.T.; Nascimento, T.R.L.; Agassi, A.C.; Almeida, A.Z.F.; Guedes, A.P.M.A.; Alves, J.M.; Bombonatti, J.F.S.; Velo, M.M.A.C. Niobium oxyhydroxide as a bioactive agent and reinforcement to a high-viscosity bulk-fill resin composite. J. Appl. Oral Sci. 2024, 32, e20230278. [Google Scholar] [CrossRef] [PubMed]
- Obeid, A.T.; Velo, M.M.A.C.; Nascimento, T.R.L.; de Lucena, F.S.; Guedes, A.P.M.A.; Mendes, A.Z.F.; dos Santos, A.N.; Ramos, C.A.S.; Mondelli, R.F.L.; Bombonatti, J.F.S. Surface mineral deposition and mechanical properties of one-step bonding agent with copper-modified niobium nanoparticles—An in vitro study. Int. J. Adhes. Adhes. 2024, 133, 103764. [Google Scholar] [CrossRef]
- Shan, Y.; Zheng, Z.; Liu, J.; Yang, Y.; Li, Z.; Huang, Z.; Jiang, D. Niobium pentoxide: A promising surface-enhanced Raman scattering active semiconductor substrate. NPJ. Comput. Mater. 2017, 3, 11. [Google Scholar] [CrossRef]
- Balbinot, G.S.; Collares, F.M.; Visioli, F.; Soares, P.B.F.; Takimi, A.S.; Samuel, S.M.W.; Leitune, V.C.B. Niobium addition to sol-gel derived bioactive glass powders and scaffolds: In vitro characterization and effect on pre-osteoblastic cell behavior. Dent. Mater. 2018, 34, 1449–1458. [Google Scholar] [CrossRef]
- Karlinsey, R.L.; Hara, A.T.; Yi, K.; Duhn, C.W. Bioactivity of novel self-assembled crystalline Nb2O5 microstructures in simulated and human salivas. Biomed. Mater. 2006, 1, 16–23. [Google Scholar] [CrossRef]
- Dionysopoulos, D.; Sfeikos, T.; Tolidis, K. Fluoride release and recharging ability of new dental sealants. Eur. Arch. Paediatr. Dent. 2016, 17, 45–51. [Google Scholar] [CrossRef]
- Fei, X.; Li, Y.; Zhang, Q.; Tian, C.; Li, Y.; Dong, Q.; Weir, M.D.; Homayounfar, N.; Oates, T.W.; Imazato, S.; et al. Novel pit and fissure sealant with nano-CaF2 and antibacterial monomer: Fluoride recharge, microleakage, sealing ability and cytotoxicity. Dent. Mater. J. 2024, 43, 346–358. [Google Scholar] [CrossRef]
- Sigma-Aldrich. (n.d.). Niobium(V) Fluoride-98% Product Specification. Available online: https://www.sigmaaldrich.com (accessed on 21 October 2024).
- Queiroz, C.S.; Hara, A.T.; Paes Leme, A.F.; Cury, J.Á. pH-cycling models to evaluate the effect of low fluoride dentifrice on enamel de- and remineralization. Braz. Dent. J. 2008, 19, 21–27. [Google Scholar] [CrossRef]
- De Mello Vieira, A.E.; Botazzo Delbem, A.C.; Sassaki, K.T.; Rodrigues, E.; Cury, J.A.; Cunha, R.F. Fluoride dose response in pH-cycling models using bovine enamel. Caries Res. 2005, 39, 514–520. [Google Scholar] [CrossRef]
- Obeid, A.T.; Kojic, D.D.; Felix, C.; Velo, M.M.; Furuse, A.Y.; Bombonatti, J.F. Effects of radiant exposure and distance on resin-based composite polymerization. Am. J. Dent. 2022, 35, 172–177. [Google Scholar] [PubMed]
- Furuse, A.Y.; Santana, L.O.C.; Rizzante, F.A.P.; Ishikiriama, S.K.; Bombonatti, J.F.; Correr, G.M.; Gonzaga, C.C. Delayed Light Activation Improves Color Stability of Dual-Cured Resin Cements. J. Prosthodont. 2018, 27, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, R.F.L.; de Almeida, C.M.; Rizzante, F.A.P.; Sanches Borges, A.F.; Ishikiriama, S.K.; Bombonatti, J.F.S. The effects of hybrid light activation and enamel acid etching on the effectiveness, stability and sensitivity after a single session in-office bleaching: A 12-month clinical trial. Photodiag. Photodyn. Ther. 2018, 24, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Aouada, F.A.; de Moura, M.R.; Fernandes, P.R.G.; Rubira, A.F.; Muniz, E.C. Mechanical and structural characterization of a PDLC device based on PAAm hydrogels and KL-DeOH-H2O lyotopic liquid crystal. Quím Nova 2014, 37, 1302–1307. [Google Scholar] [CrossRef]
- Grunenwald, A.; Keyser, C.; Sautereau, A.M.; Crubézy, E.; Ludes, B.; Drouet, C. Revisiting carbonate quantification in apatite (bio)minerals: A validated FTIR methodology. J. Archaeol. Sci. 2014, 49, 134–141. [Google Scholar] [CrossRef]
- Querido, W.; Shanas, N.; Bookbinder, S.; Oliveira-Nunes, M.C.; Krynska, B.; Pleshko, N. Fourier transform infrared spectroscopy of developing bone mineral: From amorphous precursor to mature crystal. Analyst 2020, 145, 764–776. [Google Scholar] [CrossRef]
- Kashbour, W.; Gupta, P.; Worthington, H.V.; Boyers, D. Pit and fissure sealants versus fluoride varnishes for preventing dental decay in the permanent teeth of children and adolescents. Cochrane Database Syst. Rev. 2020, 11, CD003067. [Google Scholar] [CrossRef]
- Bagherian, A.; Shiraz, A.S. Flowable composite as fissure sealing material? A systematic review and meta-analysis. Br. Dent. J. 2018, 224, 92–97. [Google Scholar] [CrossRef]
- Prabakar, J.; Indiran, M.A.; Kumar, P.; Dooraikannan, S.; Jeevanandan, G. Microleakage Assessment of Two Different Pit and Fissure Sealants: A Comparative Confocal Laser Scanning Microscopy Study. Int. J. Clin. Pediatr. Dent. 2020, 13, S29–S33. [Google Scholar] [CrossRef]
- AlQahtani, A.; Al-Dlaigan, Y.; Almahdy, A. Microtensile Bond Strength of Bioactive Pit and Fissure Sealants Bonded to Primary and Permanent Teeth. Materials 2022, 15, 1369. [Google Scholar] [CrossRef]
- Ng, T.C.; Chu, C.H.; Yu, O.Y. A concise review of dental sealants in caries management. Front. Oral Health 2023, 4, 1180405. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.N.; Fang, M.; Jiao, K.; Tang, L.H.; Xiao, Y.H.; Shen, L.J.; Chen, J.H. Tetrapod-like zinc oxide whisker enhancement of resin composite. J. Dent. Res. 2010, 89, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Memarzadeh, K.; Sharili, A.S.; Huang, J.; Rawlinson, S.C.; Allaker, R.P. Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J. Biomed. Mater. Res. A 2015, 103, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Palaniraj, S.; Murugesan, R.; Narayan, S. Aprotinin-Conju-gated biocompatible porous nanocomposite for dentine remineralization and biofilm degradation. J. Indian Chem. Soc. 2022, 99, 100702. [Google Scholar] [CrossRef]
- Karunakaran, H.; Krithikadatta, J.; Doble, M. Local and systemic adverse effects of nanoparticles incorporated in dental materials- a critical review. Saudi Dent. J. 2024, 36, 158–167. [Google Scholar] [CrossRef]
- Chau, N.P.; Pandit, S.; Jung, J.E.; Jeon, J.G. Evaluation of Streptococcus mutans adhesion to fluoride varnishes and subsequent change in biofilm accumulation and acidogenicity. J. Dent. 2014, 42, 726–734. [Google Scholar] [CrossRef]
- Arslan, S.; Zorba, Y.O.; Atalay, M.A.; Özcan, S.; Demirbuga, S.; Pala, K.; Percin, D.; Ozer, F. Effect of resin infiltration on enamel surface properties and Streptococcus mutans adhesion to artificial enamel lesions. Dent. Mater. J. 2015, 34, 25–30. [Google Scholar] [CrossRef]
- Alsabek, L.; Al-Nerabieah, Z.; Bshara, N.; Comisi, J.C. Retention and remineralization effect of moisture tolerant resin-based sealant and glass ionomer sealant on non-cavitated pit and fissure caries: Randomized controlled clinical trial. J. Dent. 2019, 86, 69–74. [Google Scholar] [CrossRef]
- Cagetti, M.G.; Carta, G.; Cocco, F.; Sale, S.; Congiu, G.; Mura, A.; Strohmenger, L.; Lingström, P.; Campus, G. Italian Experimental Group on Oral Health. Effect of Fluoridated Sealants on Adjacent Tooth Surfaces: A 30-mo Randomized Clinical Trial. J. Dent. Res. 2014, 93, 59S–65S. [Google Scholar] [CrossRef]
- Souza Penha, K.J.; Oliveira Roma, F.R.V.; Jansen Dos Santos, M.; Soares do Couto, G.A.; Firoozmand, L.M. In vitro and in vivo performance of self-conditioning sealants with pre-reacted glass for caries prevention. J. Mech. Behav. Biomed. Mater. 2022, 133, 105304. [Google Scholar] [CrossRef]
- Halasa-Rappel, Y.; Archibald, J.; Miller, P.; Frederick Lambert, R.; Hong, M.; Ng, M.W.; Sulyanto, R. Pit-and-fissure sealants on primary molars are a cost savings. J. Am. Dent. Assoc. 2021, 152, 832–841.e4. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, N.P.; Anselmo, R.B.; Bacani, R.; Sartor, L.O.; Rodrigues, L.A.; Chaguri, L. Effect of fluoride on the properties of spray-dried niobium-based composites: Structure, porosity, particle size, morphology, and photoactivity. Chem. Eng. Commun. 2021, 210, 291–296. [Google Scholar] [CrossRef]
- Nikishina, E.; Drobot, D.; Lebedeva, E. Niobium and tantalum: State of the world market, fields of application, and raw sources. Part I. Russ. J. Non-Ferr. Met. 2013, 54, 446–452. [Google Scholar] [CrossRef]
- Schulz, K.J.; DeYoung, J.H.; Seal, R.R.; Bradley, D.C. (Eds.) Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. In Geological Survey; U.S. Geological Survey: Reston, VA, USA, 2018. [Google Scholar]
- de Almeida Bino, M.C.; Eurídice, W.A.; Gelamo, R.V.; Leite, N.B.; da Silva, M.V.; de Siervo, A.; Pinto, M.R.; de Almeida Buranello, P.A.; Moreto, J.A. Structural and morphological characterization of Ti6Al4V alloy surface functionalization based on Nb2O5 thin film for biomedical applications. Appl. Surf. Sci. 2021, 557, 149739. [Google Scholar] [CrossRef]
- Swetha, D.L.; Vinay, C.; Uloopi, K.S.; RojaRamya, K.S.; Chandrasekhar, R. Antibacterial and Mechanical Properties of Pit and Fissure Sealants Containing Zinc Oxide and Calcium Fluoride Nanoparticles. Contemp. Clin. Dent. 2019, 10, 477–482. [Google Scholar] [CrossRef]
- El-Safty, S.; Akhtar, R.; Silikas, N.; Watts, D.C. Nanomechanical properties of dental resin-composites. Dent. Mater. 2012, 28, 1292–1300. [Google Scholar] [CrossRef]
- Van Landuyt, K.L.; Snauwaert, J.; De Munck, J.; Peumans, M.; Yoshida, Y.; Poitevin, A.; Coutinho, E.; Suzuki, K.; Lambrechts, P.; Van Meerbeek, B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007, 28, 3757–3785. [Google Scholar] [CrossRef]
- Yang, J.; Silikas, N.; Watts, D.C. Polymerization and shrinkage kinetics and fracture toughness of bulk-fill resin-composites. Dent. Mater. 2022, 38, 1934–1941. [Google Scholar] [CrossRef]
- Shinonaga, Y.; Arita, K.; Nishimura, T.; Chiu, S.Y.; Chiu, H.H.; Abe, Y.; Sonomoto, M.; Harada, K.; Nagaoka, N. Effects of porous-hydroxyapatite incorporated into glass-ionomer sealants. Dent. Mater. J. 2015, 34, 196–202. [Google Scholar] [CrossRef]
- Besinis, A.; Van Noort, R.; Martin, N. The use of acetone to enhance the infiltration of HA nanoparticles into a demineralized dentin collagen matrix. Dent. Mater. 2016, 32, 385–393. [Google Scholar] [CrossRef]
- Nikpour, P.; Salimi-Kenari, H.; Fahimipour, F.; Rabiee, S.M.; Imani, M.; Dashtimoghadam, E.; Tayebi, L. Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering. Carbohydr. Polym. 2018, 190, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Lee, Y.K. Differences in color, translucency and fluorescence between flowable and universal resin composites. J. Dent. 2008, 36, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Acar, O.; Yilmaz, B.; Altintas, S.H.; Chandrasekaran, I.; Johnston, W.M. Color stainability of CAD/CAM and nanocomposite resin materials. J. Prosthet. Dent. 2016, 115, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Salimkhani, H.; Joodi, T.; Bordbar-Khiabani, A.; Motei Dizaji, A.; Abdolalipour, B.; Azizi, A. Surface and structure characteristics of commercial K-Feldspar powders: Effects of temperature and leaching media. Chin. J. Chem. Eng. 2020, 28, 307–317. [Google Scholar] [CrossRef]
- Souza, L.F.B.; Soares, P.M.; Ribeiro, V.F.; Scotti, N.; Kleverlaan, C.J.; Bacchi, A.; Pereira, G.K.R. Influence of coloring techniques on the surface characteristics and color stability of a monolithic zirconia ceramic. J. Prosthet. Dent. 2023, 130, e1–e392. [Google Scholar] [CrossRef]
- Daneshpoor, N.; Pishevar, L. Comparative evaluation of bioactive cements on biomimetic remineralization of dentin. J. Clin. Exp. Dent. 2020, 12, e291–e299. [Google Scholar] [CrossRef]
- Nagarajan, S.; Raman, V.; Rajendran, N. Synthesis and electrochemical characterization of porous niobium oxide coated 316L SS for orthopedic applications. Mater. Chem. Phys. 2010, 119, 363–366. [Google Scholar] [CrossRef]
- Pauline, S.A.; Rajendran, N. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications. Appl. Surf. Sci. 2014, 290, 448–457. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Taddei, P.; Siboni, F.; Modena, E.; De Stefano, E.D.; Prati, C. Biomimetic remineralization of human dentin using promising innovative calcium-silicate hybrid “smart” materials. Dent. Mater. 2011, 27, 1055–1069. [Google Scholar] [CrossRef]
- Raynaud, S.; Champion, E.; Bernache-Assollant, D.; Thomas, P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 2002, 23, 1065–1072. [Google Scholar] [CrossRef]
- Kolavic Gray, S.; Griffin, S.O.; Malvitz, D.M.; Gooch, B.F. A comparison of the effects of toothbrushing and handpiece prophylaxis on retention of sealants. J. Am. Dent. Assoc. 2009, 140, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.C.; Chiari, M.D.S.; Alania, Y.; Natale, L.C.; Arana-Chavez, V.E.; Meier, M.M.; Fadel, V.S.; Vichi, F.M.; Hewer, T.L.R.; Braga, R.R. Ion-releasing dental restorative composites containing functionalized brushite nanoparticles for improved mechanical strength. Dent. Mater. 2018, 34, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Yassin, S.M.; Mohamad, D.; Togoo, R.A.; Sanusi, S.Y.; Johari, Y. Do nanofillers provide better physicomechanical properties to resin-based pit and fissure sealants? A systematic review. J. Mech. Behav. Biomed. Mater. 2023, 145, 106037. [Google Scholar] [CrossRef] [PubMed]
Groups | Initial SH (Kg/mm2) | SH (Kg/mm2) (After Demineralization–Caries Lesion) | SH (Kg/mm2) (After Sealant Treatment) | SH (Kg/mm2) (After pH-Cycling) |
---|---|---|---|---|
Control | 334.1 ± 24.3 Aa | 206.3 ± 1.6 Ab | 237.8 ± 7.5 Ac | 256.7 ± 4.0 Ac |
0.3Nb/F | 320.5 ± 28.7 Aa | 208.0 ± 2.9 Ab | 281.4 ± 8.3 Bc | 290.5 ± 3.6 Bc |
0.6Nb/F | 316.6 ± 23.8 Aa | 206.4 ± 2.3 Ab | 286.6 ± 7.0 Bc | 305.9 ± 1.4 BCc |
0.9Nb/F | 336.3 ± 14.7 Aa | 208.5 ± 2.8 Ab | 309.7 ± 2.5 Cc | 322.2 ± 3.4 Cac |
Group/Mass (%) | C | O | F | Mg | Al | Si | P | K | Ca | Ti | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|
Control | 23.0 | 35.2 | 6.1 | 0.1 | 5.9 | 16.7 | 0.7 | 0.0 | 0.9 | 4.9 | 6.1 |
0.3Nb/F | 26.3 | 35.5 | 4.3 | 0.3 | 4.7 | 16.8 | 0.4 | 0.0 | 1.6 | 5.2 | 4.5 |
0.6Nb/F | 22.7 | 31.5 | 6.7 | 0.4 | 6.8 | 16.1 | 0.6 | 0.2 | 1.6 | 4.9 | 8.8 |
0.9Nb/F | 22.6 | 35.3 | 5.9 | 0.2 | 5.6 | 16.5 | 0.6 | 0.1 | 1.13 | 5.2 | 6.4 |
Groups | Degree of Color Change (ΔE) (Initial: P0–P1) | Degree of Color Change (ΔE) (Final: P0–P2) | Surface Roughness (Ra) |
---|---|---|---|
Control | 7.2 ± 1.5 a | 8.7 ± 1.9 a | 0.033 a |
0.3Nb/F | 7.2 ± 1.7 a | 7.3 ± 1.3 a | 0.037 a |
0.6Nb/F | 6.9 ± 1.9 a | 5.8 ± 1.4 b | 0.042 a |
0.9Nb/F | 7.8 ± 1.0 a | 5.9 ± 1.3 b | 0.035 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obeid, A.T.; Nascimento, T.R.d.L.; Ramos, C.A.S.; Mondelli, R.F.L.; Rastelli, A.N.d.S.; Alhotan, A.; Velo, M.M.d.A.C.; Bombonatti, J.F.S. Physical–Mechanical Properties and Mineral Deposition of a Pit-and-Fissure Sealant Containing Niobium–Fluoride Nanoparticles—An In Vitro Study. Materials 2024, 17, 5378. https://doi.org/10.3390/ma17215378
Obeid AT, Nascimento TRdL, Ramos CAS, Mondelli RFL, Rastelli ANdS, Alhotan A, Velo MMdAC, Bombonatti JFS. Physical–Mechanical Properties and Mineral Deposition of a Pit-and-Fissure Sealant Containing Niobium–Fluoride Nanoparticles—An In Vitro Study. Materials. 2024; 17(21):5378. https://doi.org/10.3390/ma17215378
Chicago/Turabian StyleObeid, Alyssa Teixeira, Tatiana Rita de Lima Nascimento, Carlos Alberto Spironelli Ramos, Rafael Francisco Lia Mondelli, Alessandra Nara de Souza Rastelli, Abdulaziz Alhotan, Marilia Mattar de Amoêdo Campos Velo, and Juliana Fraga Soares Bombonatti. 2024. "Physical–Mechanical Properties and Mineral Deposition of a Pit-and-Fissure Sealant Containing Niobium–Fluoride Nanoparticles—An In Vitro Study" Materials 17, no. 21: 5378. https://doi.org/10.3390/ma17215378
APA StyleObeid, A. T., Nascimento, T. R. d. L., Ramos, C. A. S., Mondelli, R. F. L., Rastelli, A. N. d. S., Alhotan, A., Velo, M. M. d. A. C., & Bombonatti, J. F. S. (2024). Physical–Mechanical Properties and Mineral Deposition of a Pit-and-Fissure Sealant Containing Niobium–Fluoride Nanoparticles—An In Vitro Study. Materials, 17(21), 5378. https://doi.org/10.3390/ma17215378