Contribution of Copper Slag to Water Treatment and Hydrogen Production by Photocatalytic Mechanisms in Aqueous Solutions: A Mini Review
Abstract
:1. Introduction
2. Physical and Chemical Properties of Copper Slag
3. Mechanisms of Water Treatment and H2 Production by Photocatalytic Process
4. Copper Slag as Electrode Material
5. Photocatalytic Reactors Are Used for H2 Production and Water Treatment
6. Discussion
7. Current Challenges and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Superficial Characterisation of CS
Components | SiO2 | FeO | Fe2O3 | CaO | Al2O3 | MgO | K2O | S | MnO | TiO2 | P2O5 | Na2O | ||
(wt%) | 33.18 | 32.15 | 31.93 | 6.21 | 5.88 | 2.02 | 1.53 | 1.19 | 0.42 | 0.40 | 0.39 | 0.06 | ||
Elements | Ca | Al | Zn | Ag | Mg | Cu | Pb | Co | As | Ti | Ni | Mn | Sb | Mo |
(wt%) | 3.05 | 2.59 | 1.83 | 1.67 | 1.36 | 1.19 | 0.94 | 0.48 | 0.38 | 0.28 | 0.24 | 0.22 | 0.10 | 0.06 |
References
- Nasirov, S.; Girard, A.; Peña, C.; Salazar, F.; Simon, F. Expansion of renewable energy in Chile: Analysis of the effects on employment. Energy 2021, 226, 120410. [Google Scholar] [CrossRef]
- Del Río, P.; Kiefer, C.P. What will be the cost of renewable electricity generation technologies in the future? Papeles Econ. Española 2022, 34–250. [Google Scholar]
- Peñaranda, G.; Vanegas, P.C.; Castañeda, M. Carbon footprint calculation: Review key elements for the development of an opertional tool. Seeds Knowl. Mag. 2022, 2, 60–65. [Google Scholar]
- Van De Krol, R.; Liang, Y.; Schoonman, J. Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 2008, 18, 2311–2320. [Google Scholar] [CrossRef]
- Chee, M.K.T.; Ng, B.J.; Chew, Y.H.; Chang, W.S.; Chai, S.P. Photocatalytic Hydrogen Evolution from Artificial Seawater Splitting over Amorphous Carbon Nitride: Optimization and Process Parameters Study via Response Surface Modeling. Materials 2022, 15, 4894. [Google Scholar] [CrossRef]
- Gorai, B.; Jana, R.K. Characteristics and utilisation of copper slag—A review. Resour. Conserv. Recycl. 2003, 39, 299–313. [Google Scholar] [CrossRef]
- Murari, K.; Siddique, R.; Jain, K.K. Use of waste copper slag, a sustainable material. J. Mater. Cycles. Waste Manag. 2015, 17, 13–26. [Google Scholar] [CrossRef]
- Shi, C.; Meyer, C.; Behnood, A. Utilization of copper slag in cement and concrete. Resour. Conserv. Recycl. 2008, 52, 1115–1120. [Google Scholar] [CrossRef]
- de Rojas, M.I.S.; Rivera, J.; Frías, M.; Marín, F. Use of recycled copper slag for blended cements. J. Chem. Technol. Biotechnol. 2008, 83, 209–217. [Google Scholar] [CrossRef]
- Huanosta-Gutiérrez, T.; Dantas, R.F.; Ramírez-Zamora, R.; Esplugas, S. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water. J. Hazard. Mater. 2012, 213–214, 325–330. [Google Scholar] [CrossRef]
- Montoya-Bautista, C.V.; Acevedo-Peña, P.; Zanella, R.; Ramírez-Zamora, R.-M. Characterization and Evaluation of Copper Slag as a Bifunctional Photocatalyst for Alcohols Degradation and Hydrogen Production. Top. Catal. 2020, 64, 131–141. [Google Scholar] [CrossRef]
- Guo, X.; Liu, L.; Xiao, Y.; Qi, Y.; Duan, C.; Zhang, F. Band gap engineering of metal-organic frameworks for solar fuel productions. Co-ord. Chem. Rev. 2021, 435, 213785. [Google Scholar] [CrossRef]
- Nazer, A.P.; Fuentes, S.; Pavez, O.; Varela, O.; Lanas, O. Copper slag tiles. Innovation in clean production. Iberoam. J. Proj. Manag. 2012, 3, 12. [Google Scholar]
- González, C.; Parra, R.; Klenovcanova, A.; Imris, I.; Sánchez, M. Reduction of Chilean copper slags: A case of waste management project. Scand. J. Met. 2005, 34, 143–149. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, D.; Pan, J.; Zhang, F. Innovative methodology for comprehensive and harmless utilization of waste copper slag via selective reduction-magnetic separation process. J. Clean. Prod. 2018, 187, 910–922. [Google Scholar] [CrossRef]
- Shen, H.; Forssberg, E. An overview of recovery of metals from slags. Waste Manag. 2003, 23, 933–949. [Google Scholar] [CrossRef]
- Kim, B.-S.; Jo, S.-K.; Shin, D.; Lee, J.-C.; Jeong, S.-B. A physico-chemical separation process for upgrading iron from waste copper slag. Int. J. Miner. Process. 2013, 124, 124–127. [Google Scholar] [CrossRef]
- Jin, Q.; Chen, L. A Review of the Influence of Copper Slag on the Properties of Cement-Based Materials. Materials 2022, 15, 8594. [Google Scholar] [CrossRef]
- Elizabeth, S.U.S. Geological Survey Mineral Commodity Summaries. Available online: https://www.usgs.gov/centers/national-minerals-information-center (accessed on 28 August 2023).
- Solís-López, M.; Durán-Moreno, A.; Rigas, F.; Morales, A.A.; Navarrete, M.; Ramírez-Zamora, R.M. Assessment of Copper Slag as a Sustainable Fenton-Type Photocatalyst for Water Disinfection. In Water Reclamation and Sustainability; Elsevier: Amsterdam, The Netherlands, 2014; pp. 199–227. [Google Scholar] [CrossRef]
- Mayer, B.K.; Gerrity, D.; Rittmann, B.E.; Reisinger, D.; Brandt-Williams, S. Innovative Strategies to Achieve Low Total Phosphorus Concentrations in High Water Flows. Crit. Rev. Environ. Sci. Technol. 2013, 43, 409–441. [Google Scholar] [CrossRef]
- García-Estrada, R.; Arzate, S.; Ramírez-Zamora, R.-M. Thiabendazole degradation by photo-NaOCl/Fe and photo-Fenton like processes, using copper slag as an iron catalyst, in spiked synthetic and real secondary wastewater treatment plant effluents. Water Sci. Technol. 2022, 87, 620–634. [Google Scholar] [CrossRef]
- Morales-Pérez, A.-A.; García-Pérez, R.; Tabla-Vázquez, C.-G.; Ramírez-Zamora, R.-M. Simultaneous Hydrogen Production and Acetic Acid Degradation by Heterogeneous Photocatalysis using a Metallurgical Waste as Catalyst. Top. Catal. 2020, 64, 17–25. [Google Scholar] [CrossRef]
- Herrera-Ibarra, L.-M.; Ramírez-Zamora, R.-M.; Martín-Domínguez, A.; Piña-Soberanis, M.; Schnabel-Peraza, D.; Bañuelos-Díaz, J.-A. Treatment of Textile Industrial Wastewater by the Heterogeneous Solar Photo-Fenton Process Using Copper Slag. Top. Catal. 2022, 65, 1163–1179. [Google Scholar] [CrossRef]
- Montoya-Bautista, C.V.; Avella, E.; Ramírez-Zamora, R.-M.; Schouwenaars, R. Metallurgical Wastes Employed as Catalysts and Photocatalysts for Water Treatment: A Review. Sustainability 2019, 11, 2470. [Google Scholar] [CrossRef]
- Nazer, A.; Varela, O.; Pavez, O.; Fuentes, S.; Castillo, P.; González, L. Uso de escorias de cobre en la fabricación de adocretos de hormigón. Rev. Ing. 2013, 29, 23–31. [Google Scholar]
- Zhai, Q.; Liu, R.; Wang, C.; Wen, X.; Li, X.; Sun, W. A novel scheme for the utilization of Cu slag flotation tailings in preparing internal electrolysis materials to degrade printing and dyeing wastewater. J. Hazard. Mater. 2021, 424, 127537. [Google Scholar] [CrossRef] [PubMed]
- Rohini, I.; Padmapriya, R. Properties of Bacterial Copper Slag Concrete. Buildings 2023, 13, 290. [Google Scholar] [CrossRef]
- Lavanya, C.; Rao, A.S.; Kumar, N.D. Study on Coefficient of Permeability of Copper slag when admixed with Lime and Cement. IOSR J. Mech. Civ. Eng. 2013, 7, 19–25. [Google Scholar]
- Salleh, S.; Shaaban, M.G.; Mahmud, H.B.; Kang, J.; Looi, K.T. Production of bricks from shipyard repair and maintenance hazardous waste. Int. J. Environ. Sci. Dev. 2014, 5, 52. [Google Scholar]
- Wu, W.; Zhang, W.; Ma, G. Mechanical properties of copper slag reinforced concrete under dynamic compression. Constr. Build. Mater. 2010, 24, 910–917. [Google Scholar] [CrossRef]
- Arivalagan, S. Experimental study on the flexural behavior of reinforced concrete beams as replacement of copper slag as fine aggregate. J. Civ. Eng. Urban. 2013, 3, 176–182. [Google Scholar]
- Ambily, P.; Umarani, C.; Ravisankar, K.; Prem, P.R.; Bharatkumar, B.; Iyer, N.R. Studies on ultra high performance concrete incorporating copper slag as fine aggregate. Constr. Build. Mater. 2015, 77, 233–240. [Google Scholar] [CrossRef]
- Anudeep, R.; Ramesh, K.V.; SowjanyaVani, V. Study on mechanical properties of concrete with various slags as replacement to fine aggregate. Concr. Aggreg. Replace. 2015, 86–90. [Google Scholar]
- Nazer, A.; Payá, J.; Borrachero, M.V.; Monzó, J. Caracterización de escorias de cobre de fundiciones chilenas del Siglo XIX. Rev. Met. 2016, 52, 83. [Google Scholar] [CrossRef]
- Brindha, D.; Sureshkumar, P. Buckling strength of RCC columns incorporating copper slag as partial replacement of cement. In Proceedings of the National Conference on Emerging Trends in Civil Engineering, Tamil Nadu, India, 19–21 November 2010. [Google Scholar]
- Zhang, Q.; Zhang, B.; Wang, D. Environmental Benefit Assessment of Blended Cement with Modified Granulated Copper Slag. Materials 2022, 15, 5359. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wei, Y.; Zhou, S.; Li, B.; Yang, Y.; Wang, H. Effect of B2O3 content on the viscosity of copper slag. J. Alloys Compd. 2019, 822, 153478. [Google Scholar] [CrossRef]
- Lewowicki, S.; Rajczyk, J. The usefulness of copper metallurgical slag as a micro-aggegate additive in mortars and concrete mixtures. In Proceedings of the 13 International Conference on Solid Waste Technology and Management, Philadelphia, PA, USA, 16–19 November 1997; Volume 2. [Google Scholar]
- Park, S.I.; Jung, S.-M.; Kim, J.-Y.; Yang, J. Effects of Mono- and Bifunctional Surface Ligands of Cu–In–Se Quantum Dots on Photoelectrochemical Hydrogen Production. Materials 2022, 15, 6010. [Google Scholar] [CrossRef]
- Fox, M.A.; Dulay, M.T. Heterogeneous Photocatalysis. 1993. Available online: https://pubs.acs.org/sharingguidelines (accessed on 3 May 2023).
- Lavand, A.B.; Malghe, Y.S. Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite. J. Saudi Chem. Soc. 2015, 19, 471–478. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Chai, Q. Alkali-activated blast furnace slag-based nanomaterial as a novel catalyst for synthesis of hydrogen fuel. Fuel 2014, 115, 84–87. [Google Scholar] [CrossRef]
- Montoya-Bautista, C.V.; Alcántar-Vázquez, B.C.; Solís-López, M.; Tabla-Vázquez, C.G.; Morales-Pérez, A.A.; Schouwenaars, R.; Ramírez-Zamora, R.M. Photocatalytic H2 Production and Carbon Dioxide Capture Using Metallurgical Slag and Slag-Derived Materials. In Handbook of Ecomaterials; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–19. [Google Scholar] [CrossRef]
- Yadav, A.; Hunge, Y.; Kang, S.-W. Spongy ball-like copper oxide nanostructure modified by reduced graphene oxide for enhanced photocatalytic hydrogen production. Mater. Res. Bull. 2020, 133, 111026. [Google Scholar] [CrossRef]
- Yadav, A.A.; Hunge, Y.M.; Kang, S.-W. Visible Light-Responsive CeO2/MoS2 Composite for Photocatalytic Hydrogen Production. Catalysts 2022, 12, 1185. [Google Scholar] [CrossRef]
- Augustyński, J.; Alexander, B.D.; Solarska, R. Metal oxide photoanodes for water splitting. Top Curr. Chem. 2011, 303, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Honda, K. Electrochemical Evidence for the Mechanism of the Primary Stage of Photosynthesis. Bull. Chem. Soc. Jpn. 1971, 44, 1148–1150. [Google Scholar] [CrossRef]
- Constantino, D.S.; Dias, M.M.; Silva, A.M.; Faria, J.L.; Silva, C.G. Intensification strategies for improving the performance of photocatalytic processes: A review. J. Clean. Prod. 2022, 340, 130800. [Google Scholar] [CrossRef]
- Takata, T.; Domen, K. Particulate Photocatalysts for Water Splitting: Recent Advances and Future Prospects. ACS Energy Lett. 2019, 4, 542–549. [Google Scholar] [CrossRef]
- Portier, J.; Hilal, H.; Saadeddin, I.; Hwang, S.; Subramanian, M.; Campet, G. Thermodynamic correlations and band gap calculations in metal oxides. Prog. Solid State Chem. 2004, 32, 207–217. [Google Scholar] [CrossRef]
- Escobar-Alarcón, L.; Solís-Casados, D.A. Desarrollo de fotocatalizadores basados en TiO2 en forma de película delgada para la degradación de moléculas orgánicas en solución acuosa. Mundo Nano. Rev. Interdiscip. Nanociencias Nanotecnología 2020, 14, 1e–23e. [Google Scholar] [CrossRef]
- Opoku, F.; Govender, K.K.; van Sittert, C.G.C.E.; Govender, P.P. Recent progress in the development of semiconduc-tor-based photocatalyst materials for applications in photocatalytic water splitting and degradation of pollutants. Adv. Sustain. Syst. 2017, 1, 1700006. [Google Scholar] [CrossRef]
- Arzate-Salgado, S.-Y.; Morales-Pérez, A.-A.; Solís-López, M.; Ramírez-Zamora, R.-M. Evaluation of metallurgical slag as a Fenton-type photocatalyst for the degradation of an emerging pollutant: Diclofenac. Catal. Today 2016, 266, 126–135. [Google Scholar] [CrossRef]
- Tian, H.; Guo, Z.; Pan, J.; Zhu, D.; Yang, C.; Xue, Y.; Li, S.; Wang, D. Comprehensive review on metallurgical recycling and cleaning of copper slag. Resour. Conserv. Recycl. 2021, 168, 105366. [Google Scholar] [CrossRef]
- Xu, C.; Anusuyadevi, P.R.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured materials for photocatalysis. Chem. Soc. Rev. 2019, 48, 3868–3902. [Google Scholar] [CrossRef]
- Tian, B.; Lei, Q.; Tian, B.; Zhang, W.; Cui, Y.; Tian, Y. UV-driven overall water splitting using unsupported gold nanoparticles as photocatalysts. Chem. Commun. 2018, 54, 1845–1848. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef] [PubMed]
- Mercado-Borrayo, B.M.; González-Chávez, J.L.; Ramírez-Zamora, R.M.; Schouwenaars, R. Valorization of Metallurgical Slag for the Treatment of Water Pollution: An Emerging Technology for Resource Conservation and Re-utilization. J. Sustain. Met. 2018, 4, 50–67. [Google Scholar] [CrossRef]
- Lasia, A. Semiconductors and Mott-Schottky Plots. In Electrochemical Impedance Spectroscopy and its Applications; Springer: New York, NY, USA, 2014; pp. 251–255. [Google Scholar] [CrossRef]
- Gómez, R.; Lana-Villarreal, T. Tema 3. Conceptos de cinética electroquímica. Corrosión 2008. Available online: https://rua.ua.es/dspace/bitstream/10045/8229/1/CorrTema3.pdf (accessed on 20 October 2023).
- Nandy, S.; Savant, S.A.; Haussener, S. Prospects and challenges in designing photocatalytic particle suspension reactors for solar fuel processing. Chem. Sci. 2021, 12, 9866–9884. [Google Scholar] [CrossRef]
- Fernández-Solis, C.D.; Vimalanandan, A.; Altin, A.; Mondragón-Ochoa, J.S.; Kreth, K.; Keil, P.; Erbe, A. Fundamentals of electrochemistry, corrosion and corrosion protection. Soft Matter Aqueous Interfaces 2016, 29–70. [Google Scholar] [CrossRef]
- McCafferty, E. Validation of corrosion rates measured by the Tafel extrapolation method. Corros. Sci. 2005, 47, 3202–3215. [Google Scholar] [CrossRef]
- Halley, J.W.; Schofield, A.; Berntson, B. Use of magnetite as anode for electrolysis of water. J. Appl. Phys. 2012, 111, 124911. [Google Scholar] [CrossRef]
- Lin, L.; Hisatomi, T.; Chen, S.; Takata, T.; Domen, K. Visible-Light-Driven Photocatalytic Water Splitting: Recent Progress and Challenges. Trends Chem. 2020, 2, 813–824. [Google Scholar] [CrossRef]
- Profeti, L.P.; Ticianelli, E.A.; Assaf, E.M. Production of hydrogen via steam reforming of biofuels on Ni/CeO2–Al2O3 catalysts promoted by noble metals. Int. J. Hydrogen Energy 2009, 34, 5049–5060. [Google Scholar] [CrossRef]
- Bhandari, R.; Trudewind, C.A.; Zapp, P. Life cycle assessment of hydrogen production via electrolysis—A review. J. Clean. Prod. 2013, 85, 151–163. [Google Scholar] [CrossRef]
- Bozoglan, E.; Midilli, A.; Hepbasli, A. Sustainable assessment of solar hydrogen production techniques. Energy 2012, 46, 85–93. [Google Scholar] [CrossRef]
- Shukla, P.; Karn, R.; Singh, A.; Srivastava, O. Studies on PV Assisted PEC Solar Cells for Hydrogen Production Through Photoelectrolysis of Water. Int. J. Hydrog. Energy 2002, 27, 135–141. [Google Scholar] [CrossRef]
- Kudo, A. Photocatalysis and solar hydrogen production. Pure Appl. Chem. 2007, 79, 1917–1927. [Google Scholar] [CrossRef]
- Baykara, S.Z. Experimental solar water thermolysis. Int. J. Hydrog. Energy 2004, 29, 1459–1469. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Barbieriková, Z.; Lončarević, D.; Papan, J.; Vukoje, I.D.; Stoiljković, M.; Ahrenkiel, S.P.; Nedeljković, J.M. Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles. Adv. Powder Technol. 2019, 31, 4683–4690. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X.; Hao, S.; Zhang, X.; Ma, W.; Zhao, G.; Xu, X. Recent advances in the improvement of g-C3N4 based photocatalytic materials. Chin. Chem. Lett. 2020, 32, 13–20. [Google Scholar] [CrossRef]
- Van Dang, H.; Wang, Y.H.; Wu, J.C. Z-scheme photocatalyst Pt/GaP-TiO2-SiO2:Rh for the separated H2 evolution from photocatalytic seawater splitting. Appl. Catal. B Environ. 2021, 296, 120339. [Google Scholar] [CrossRef]
- Liu, J.; Gao, Y.; Zhang, Z.; Dang, R.; Tiri, R.N.E.H.; Bekmezci, M.; Bayat, R.; Darabi, R.; Sen, F. Photocatalytic activity of TiO2-ZnO/g-C3N4 nanocomposites for methylene orange and Rhodamine B dyes removal from water and photocatalytic hydrogen generation. Chemosphere 2023, 339, 139426. [Google Scholar] [CrossRef]
- Kim, J.H.; Hansora, D.; Sharma, P.; Jang, J.-W.; Lee, J.S. Toward practical solar hydrogen production—An artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 2019, 48, 1908–1971. [Google Scholar] [CrossRef]
- Dincer, I. Green methods for hydrogen production. Int. J. Hydrogen Energy 2012, 37, 1954–1971. [Google Scholar] [CrossRef]
- Borges, M.E.; Navarro, S.; Carmona, H.d.P.; Esparza, P. Natural Volcanic Material as a Sustainable Photocatalytic Material for Pollutant Degradation under Solar Irradiation. Materials 2022, 15, 3996. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, R.; Liao, Q.; Zhu, X.; Wang, G.; Wang, D. High surface area optofluidic microreactor for redox mediated photocatalytic water splitting. Int. J. Hydrogen Energy 2014, 39, 19270–19276. [Google Scholar] [CrossRef]
- Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 2021, 598, 304–307. [Google Scholar] [CrossRef]
- Lo, C.-C.; Huang, C.-W.; Liao, C.-H.; Wu, J.C. Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting. Int. J. Hydrogen Energy 2010, 35, 1523–1529. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, Y.J.; Zhang, L.; Zhang, K. Preparation, characterization and photocatalytic activity of novel CeO2 loaded porous alkali-activated steel slag-based binding material. Int. J. Hydrog. Energy 2017, 42, 17341–17349. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, C.; Gao, W.; Lu, M. Recovery of Iron from Copper Slag Using Coal-Based Direct Reduction: Reduction Characteristics and Kinetics. Minerals 2020, 10, 973. [Google Scholar] [CrossRef]
- Phiri, T.C.; Singh, P.; Nikoloski, A.N. The potential for copper slag waste as a resource for a circular economy: A review—Part I. Miner. Eng. 2022, 180, 107474. [Google Scholar] [CrossRef]
- Moram, M.A.; Vickers, M.E. X-ray diffraction of III-nitrides. Rep. Prog. Phys. 2009, 72, 36502. [Google Scholar] [CrossRef]
- Xue, Y.; Guo, Z.; Zhu, D.; Pan, J.; Wang, Y.; Zhan, R. Efficient utilization of copper slag in an innovative sintering process for Fe–Ni–Cu alloy preparation and valuable elements recovery. J. Mater. Res. Technol. 2022, 18, 3115–3129. [Google Scholar] [CrossRef]
- Phiri, T.C.; Singh, P.; Nikoloski, A.N. The potential for copper slag waste as a resource for a circular economy: A review—Part II. Miner. Eng. 2021, 172, 107150. [Google Scholar] [CrossRef]
- Duan, S.; Zhang, S.; Chang, S.; Meng, S.; Fan, Y.; Zheng, X.; Chen, S. Efficient photocatalytic hydrogen production from formic acid on inexpensive and stable phosphide/Zn3In2S6 composite photocatalysts under mild conditions. Int. J. Hydrogen Energy 2019, 44, 21803–21820. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, D.; Pan, J.; Wu, T.; Zhang, F. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag. Metals 2016, 6, 86. [Google Scholar] [CrossRef]
- Sun, L.; Feng, Y.; Wang, D.; Qi, C.; Zeng, X. Influence of CaO on physical and environmental properties of granulated copper slag: Melting behavior, grindability and leaching behavior. Int. J. Environ. Res. Public Health 2022, 19, 13543. [Google Scholar] [CrossRef] [PubMed]
- Gbor, P.K.; Mokri, V.; Jia, C.Q. Characterization of smelter slags. J. Environ. Sci. Heal. Part A 2000, 35, 147–167. [Google Scholar] [CrossRef]
- Gabasiane, T.; Danha, G.; Mamvura, T.; Mashifana, T.; Dzinomwa, G. Characterization of copper slag for beneficiation of iron and copper. Heliyon 2021, 7, e06757. [Google Scholar] [CrossRef]
- Chun, T.; Ning, C.; Long, H.; Li, J.; Yang, J. Mineralogical Characterization of Copper Slag from Tongling Nonferrous Metals Group China. JOM 2015, 68, 2332–2340. [Google Scholar] [CrossRef]
- Sánchez, M.; Sudbury, M. Physicochemical characterization of copper slag and alternatives of friendly environmental management. J. Min. Met. Sect. B Met. 2013, 49, 161–168. [Google Scholar] [CrossRef]
- Wang, X.; Geysen, D.; Tinoco, S.V.P.; D’Hoker, N.; Van Gerven, T.; Blanpain, B. Characterisation of copper slag in view of metal recovery. Trans. Inst. Min. Metall. Sect. C: Miner. Process. Extr. Metall. 2015, 124, 83–87. [Google Scholar] [CrossRef]
- Lori, A.R.; Hassani, A.; Sedghi, R. Investigating the mechanical and hydraulic characteristics of pervious concrete containing copper slag as coarse aggregate. Constr. Build. Mater. 2018, 197, 130–142. [Google Scholar] [CrossRef]
- Diaz-Rosero, Y.; González-Salcedo, L.; Rosero, J.D. Caracterización de escoria de cobre secundaria y evaluación de su actividad puzolánica. Inf. Técnico 2020, 84, 192–201. [Google Scholar] [CrossRef]
- Manasse, A.; Mellini, M.; Viti, C. The copper slags of the Capattoli Valley, Campiglia Marittima, Italy. Eur. J. Miner. 2001, 13, 949–960. [Google Scholar] [CrossRef]
- Saez, R.; Nocete, F.; Nieto, J.M.; Capitan, M.A.; Rovira, S. The Extractive Metallurgy of Copper from Cabezo Jure, Huelva, Spain: Chemical and Mineralogical Study of Slags Dated to the Third Millenium B.C. Can. Miner. 2003, 41, 627–638. [Google Scholar] [CrossRef]
- Kundu, T.; Senapati, S.; Das, S.K.; Angadi, S.I.; Rath, S.S. A comprehensive review on the recovery of copper values from copper slag. Powder Technol. 2023, 426, 118693. [Google Scholar] [CrossRef]
- Ma, Q.; Du, H.; Zhou, X.; He, K.; Lin, Z.; Yan, F.; Huang, L.; Guo, R. Performance of copper slag contained mortars after exposure to elevated temperatures. Constr. Build. Mater. 2018, 172, 378–386. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Unit weight (T/m3) | 2.8–3.8 |
Absorption | 0.13 |
Bulk density (T/m3) | 2.3–2.6 |
Conductivity (µs/cm) | 500 |
Specific gravity | 2.8–3.8 |
Hardness (Moh) | 6–7 |
Moisture (ppm) | <5 |
Abrasion loss (%) | 2.4–10 |
Internal friction angle | 40–53 |
Property | Description | Ref. |
---|---|---|
Particle shape | Angular | [29,30,31] |
Irregular | [32,33] | |
Multifaceted | [34] | |
Surface Texture | Glassy | [30,31,33,35] |
Smooth | [18,31,34] | |
Granular | [27,36,37] | |
Rough | [30] | |
Color | Black | [23,30,31,33] |
Blackish grey | [34,38] | |
Brown with green, red, or black tint | [35,39] |
Photocatalyst Material | Band Gap | Wavelength | Ref. |
---|---|---|---|
[eV] | (nm) | ||
TiO2 (anatase) | 3.2 | 380 | [48,49] |
TiO2 (rutile) | 3 | 414 | [49] |
Copper Slag (CS) | 2.75 | 450 | [11,50] |
Fe2SiO4 | 2.7 | --- | [11,51] |
Fe2O3 | 2.3 | 565 | [51,52] |
α-Fe2O3 | 1.9 | 600 | [53] |
Ref. | Photocatalytic Material | Photocatalytic Material | Key Results |
---|---|---|---|
[73] | TiO2 | Water electrolysis with illuminated TiO2. | Production of hydrogen from water; The first study to document the photolysis of water. |
[10] | Copper Slag | Photocatalytic degradation of phenol. | Degradation of phenol. |
[43] | Alkali-activated blast furnace slag | Photocatalytic decomposition of water. | Decomposition of water. |
[54] | Residuos metalúrgicos | Photodegradation of Diclofenac. | Fenton-type photocatalysts with potential applications in advanced oxidation processes (AOPs) assisted by sunlight at near neutral pH. |
[57] | Au nanoparticles | Total photocatalytic splitting of water | Improved the efficiency of the hydrogen production rate relative to TiO2 nanoparticles |
[59] | Metallurgical slag | Photocatalysis of water. | Applications in highly efficient advanced chemical oxidation processes. |
[74] | Surface-modified titanate nanotubes | Spin trap under irradiation of photocatalysts prepared with ultraviolet or visible light. | Increased hydrogen production was observed on surface-modified titanate nanotubes by 5-amino acid salicylic acid decorated with nano-sized silver nanoparticles. |
[75] | g-C3N4 | Photocatalysis under controlled conditions | Significantly improve hydrogen production compared to conventional TiO2. |
[76] | TiO2/SiO2 nanocomposites | Decomposition of organic pollutants and hydrogen production at the same time. | High photocatalytic efficiency for water treatment and H2 production. |
[11] | Copper Slag | Photocatalytic degradation of toxic alcohols. | Efficient photocatalytic reaction for the oxidation of organic pollutants in industrial wastewater, with the simultaneous generation of H2. |
[77] | ZnO/TiO2/g-C3N4 | Roller experiments and product evaluation. | Increasing Hydrogen Production Efficiency and Pollutant Degradation. |
[24] | Copper slag | Photo-Fenton (HPF) heterogeneous process under solar irradiation. | This water can be reused in the textile industry process if the time of exposure to the sun is increased to remove residual H2O2. |
[22] | copper slag (CS) as an iron-based catalyst, and NaOCl as oxidants | Advanced Oxidation Processes using simulated sunlight (SSL). | It improved the rate of degradation of the pollutant, compared to the rate of the Photo-Fenton reaction. |
[45] | CuO and CuO/rGO | Photocatalysts by hydrothermal route | The rGO in the composite captures these excited electrons, facilitating their transfer to reduce H⁺ ions, thus increasing the hydrogen production rate |
[46] | CeO2/MoS2 | MoS2 provides active sites that contribute to the enhanced H2 production observed in the CeO2/MoS2 composite | The CeO2/MoS2 composite is synthesised to leverage both materials’ photocatalytic properties under visible light. |
Lamp | Hg | Xe | ||||
---|---|---|---|---|---|---|
Alcohol | Average H2 Production (µmol g−1h−1) | AQY H2 | Degradation * (%) | Average H2 Production (µmol g−1h−1) | AQY H2 | Degradation * (%) |
Methanol | 0.519 | 0.01 | 17.32 | 0.867 | 0.22 | 13.94 |
Propanol | 0.414 | 0.008 | 3.29 | 0.649 | 0.08 | 3.49 |
Isoamyl | 0.221 | 0.004 | 3.42 | 0.588 | 0.01 | 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiva-Guajardo, S.I.; Toro, N.; Fuentealba, E.; Morel, M.J.; Soliz, Á.; Portillo, C.; Galleguillos Madrid, F.M. Contribution of Copper Slag to Water Treatment and Hydrogen Production by Photocatalytic Mechanisms in Aqueous Solutions: A Mini Review. Materials 2024, 17, 5434. https://doi.org/10.3390/ma17225434
Leiva-Guajardo SI, Toro N, Fuentealba E, Morel MJ, Soliz Á, Portillo C, Galleguillos Madrid FM. Contribution of Copper Slag to Water Treatment and Hydrogen Production by Photocatalytic Mechanisms in Aqueous Solutions: A Mini Review. Materials. 2024; 17(22):5434. https://doi.org/10.3390/ma17225434
Chicago/Turabian StyleLeiva-Guajardo, Susana I., Norman Toro, Edward Fuentealba, Mauricio J. Morel, Álvaro Soliz, Carlos Portillo, and Felipe M. Galleguillos Madrid. 2024. "Contribution of Copper Slag to Water Treatment and Hydrogen Production by Photocatalytic Mechanisms in Aqueous Solutions: A Mini Review" Materials 17, no. 22: 5434. https://doi.org/10.3390/ma17225434
APA StyleLeiva-Guajardo, S. I., Toro, N., Fuentealba, E., Morel, M. J., Soliz, Á., Portillo, C., & Galleguillos Madrid, F. M. (2024). Contribution of Copper Slag to Water Treatment and Hydrogen Production by Photocatalytic Mechanisms in Aqueous Solutions: A Mini Review. Materials, 17(22), 5434. https://doi.org/10.3390/ma17225434