Effect of Cerium Content on Non–Metallic Inclusions and Solidification Microstructure in 55SiCr Spring Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of Ce Addition on Oxygen and Sulfur Content in Steel
3.2. Effect of Ce Content on the Characteristics of Inclusions in Steel
3.3. Thermodynamics of Inclusion Formation
3.4. Effect of Ce Content on the Number and Size of Inclusions
3.5. Effect of Ce Content on the Solidification Structure
3.6. Effect of Rare Earth Content on Secondary Dendrite Arm Spacing
3.7. Effect of Rare Earth Content on the Pearlite Lamellar Spacing
4. Conclusions
- (1)
- An appropriate amount of Ce addition can effectively modify the non-metallic inclusions in 55SiCr spring steel and refine the solidification structure, including a reduction in equiaxed dendrite size, SDAS, and PLS. The optimum Ce content is 0.011–0.017 wt% for the present study.
- (2)
- The rare earth element Ce shows a purifying effect on 55SiCr spring steel. When the content reaches 0.017 wt%, the total oxygen content in the matrix decreases from 11.99 ppm in the Ce-free scheme to 9.95 ppm, and the sulfur content decreases from 55 ppm to 48 ppm.
- (3)
- MnS inclusions are almost completely modified into spherical and small-sized Ce–S and Ce–O–S inclusions when the Ce content is about 0.017 wt%. At the same time, small-sized Ce–P and Ce–O–P–C inclusions begin to appear. As the Ce content increases to 0.075 wt%, large amounts of Ce–P and Ce–P–O inclusions are generated. The formation mechanism of the different Ce-containing inclusions is well explained by Gibbs free energy calculations and the thermodynamic diagram.
- (4)
- With the increase in Ce content in 55SiCr spring steel, the equiaxed ratio in the solidification structure initially increases and then decreases, while the variations of SDAS and PLS present the opposite trend. The largest equiaxed ratio occurs at 0.017 wt% Ce content, and the smallest SDAS and PLS are observed at 0.011 wt% Ce.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Tang, H.Y.; Wu, T.; Wu, G.H.; Li, J.S. Effect of Acid-Soluble Aluminum on the Evolution of Non-metallic Inclusions in Spring Steel. Metall. Mater. Trans. B 2017, 48, 943–955. [Google Scholar] [CrossRef]
- Cui, Y.J.; Hui, W.J.; Zhang, Y.J.; Zhao, X.L.; Zhang, J.W.; Gao, J.B. Comparison of high-cycle fatigue properties of continuous casting and mould casting axle steels. China Metall. 2019, 29, 31–39. [Google Scholar] [CrossRef]
- Pineau, A.; Forest, S. Effects of inclusions on the very high cycle fatigue behaviour of steels. Fatigue Fract. Eng. Mater. Struct. 2017, 4, 1694–1707. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, G.G.; Wang, Q.M.; Dou, W.Z.; Hu, X.W. Effect of large inclusion on impact toughness of 12MDV6 casting. China Metall. 2020, 30, 39–47. [Google Scholar] [CrossRef]
- Wang, H.; Bao, Y.P.; Zhi, J.G.; Duan, C.Y.; Gao, S.; Wang, M. Effect of Rare Earth Ce on the Morphology and Distribution of Al2O3 Inclusions in High Strength IF Steel Containing Phosphorus during Continuous Casting and Rolling Process. ISIJ Int. 2021, 61, 657–666. [Google Scholar] [CrossRef]
- Geng, R.M.; Li, J.; Shi, C.B. Evolution of Inclusions with Ce Addition and Ca Treatment in Al-killed Steel during RH Refining Process. ISIJ Int. 2021, 66, 1506–1513. [Google Scholar] [CrossRef]
- Liu, J.W.; Tang, H.Y.; Li, G.; Wang, K.M.; Jiang, X.Y.; Zhang, J.Q. Effect of rare earth on inclusions in a high-strength corrosion resistant steel. Iron Steel. 2023, 58, 70–82. [Google Scholar] [CrossRef]
- Deng, X.X.; Wang, X.H.; Jiang, M.; Hu, Z.Y.; Shao, X.J.; Wang, W.J. Effect of inclusions on the formation of intra-granular acicular ferrite in steels containing rare earth elements. J. Univ. Sci. Technol. B 2012, 34, 535–540. [Google Scholar] [CrossRef]
- Li, G.; Lan, P.; Zhang, J.Q.; Wu, G.X. Refinement of the Solidification Structure of Austenitic Fe-Mn-C-Al TWIP Steel. Metall. Mater. Trans. B 2020, 51, 452–466. [Google Scholar] [CrossRef]
- Zhong, L.Q.; Wang, Z.G.; Chen, R.C.; He, J.G. Effects of Yttrium on the Microstructure and Properties of 20MnSi Steel. Steel Res. Int. 2021, 92, 2100198. [Google Scholar] [CrossRef]
- Wu, J.Z.; Song, B.; Mao, J.H. Effect of La on Inclusions and Microstructure of Vanadium-containing Pipeline Steel. Rare Earths 2023, 44, 31–41. [Google Scholar] [CrossRef]
- Sun, S.; Li, Y.; Sun, M.; Zhang, L.; Jiang, Z.H. Effect of Ce on microstructure and properties of automotive valve spring steel 65Si2CrV. Trans. Mater. Heat Treat. 2020, 41, 51–59. [Google Scholar] [CrossRef]
- Liu, C.; Revilla, R.I.; Liu, Z.Y.; Zhang, D.W.; Li, X.G.; Terryn, H. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corros. Sci. 2017, 129, 82–90. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, Y.; Cheng, G.G.; Chen, L.; Yan, Q.Z.; Zhang, Y.D. The Effect of Rare Earth on the Inclusions in H13 Steel. Rare Earths 2018, 39, 16–23. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, M.X.; Ren, H. Roles of Lanthanum and Cerium in Grain Refinement of Steels during Solidification. Metals 2018, 8, 884. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Li, G.; Tang, H.Y.; Liu, J.W.; Cai, S.; Zhang, J.Q. Modification of Inclusions by Rare Earth Elements in a High-Strength Oil Casing Steel for Improved Sulfur Resistance. Materials 2023, 16, 675. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Jing, C.L.; Li, H.B.; Chu, R.S.; Chen, B. Effect of Rare Earth Elements on the Inclusion Behavior in Low Alloy Structural Steel. Mater. Sci. Forum 2019, 944, 364–372. [Google Scholar] [CrossRef]
- Qu, M.Q.; Ren, H.P.; Jin, Z.L.; Yang, J.; Li, Y.H. Effect of Ce on microstructure and inhibitor evolution for 3% grain-oriented steel. Heat Treat. Met. 2017, 42, 26–30. [Google Scholar] [CrossRef]
- Liu, J.G.; Chen, Z.X. Effect of rare earth elements on 60Si2Mn steel inclusions. J. Iron Steel Res. 1983, 02, 199–205. [Google Scholar] [CrossRef]
- Song, M.M.; Song, B.; Xin, W.B.; Sun, G.L.; Song, G.Y.; Hu, C.L. Effects of Rare Earth Addition on Microstructure of C-Mn Steel. Ironmak. Steel. 2015, 42, 594–599. [Google Scholar] [CrossRef]
- Ren, Q.; Zhang, L.F. Effect of cerium content on inclusions in an ultra-low-carbon aluminum-killed steel. Metall. Mater. Trans. B 2020, 51, 589–600. [Google Scholar] [CrossRef]
- Wang, M.; Gao, S.; Li, X.; Wu, G.X.; Xing, L.D.; Wang, H.; Zhi, J.G.; Bao, Y.P. Reaction behaviour between Ce Ferroalloy and molten steel during rare earth treatment in the ultral carbon Al-killed steel. ISIJ Int. 2021, 61, 1524–1531. [Google Scholar] [CrossRef]
- Bramfitt, B.L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1970, 1, 1987–1995. [Google Scholar] [CrossRef]
- Waudby, P.E. Rare earth additions to steel. Int. Met. Rev. 1978, 23, 74–98. [Google Scholar] [CrossRef]
- Wu, Y.M.; Wang, L.M.; Du, T. Thermodynamics of rare earth elements in liquid iron. J. Less Common Met. 1985, 110, 187–193. [Google Scholar] [CrossRef]
- Tang, K.; Løvvik, O.M.; Safarian, J.; Xiang, M.; Merete, T. Removal of Phosphorus in Metallurgical Silicon by Rare Earth Elements. Metall. Mater. Trans. B 2014, 1, 257–262. [Google Scholar] [CrossRef]
- Cao, Y.F.; Miao, Y.Y.; Li, D.Z.; Chen, Y.; Fu, P.X.; Liu, H.W.; Kang, X.H.; Liu, H.H.; Sun, C. On the Mechanism of Steel Homogenization via Rare Earth Addition: Experimental Characterization and Numerical Simulation. Metall. Mater. Trans. B 2022, 53, 1858–1874. [Google Scholar] [CrossRef]
- Wu, C.C.; Cheng, G.G.; Tian, J.; Xie, Y. Effect of Rare Earths on 09Cr2AlMoRE Steel with Residual Elements Arsenic and Tin. J. Chin. Soc. Rare Earths 2013, 31, 597–604. [Google Scholar]
- Xin, W.B.; Song, B.; Song, M.M.; Song, G.Y. Effect of Cerium on Characteristic of Inclusions and Grain Boundary Segregation of Arsenic in Iron Melts. Steel Res. Int. 2015, 86, 1430–1438. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, G.G.; Zhu, M.T.; Dai, W.X. Effect of Cerium on the Behavior of Primary Carbides in Cast H13 Steels. Metall. Mater. Trans. B 2021, 52, 700–713. [Google Scholar] [CrossRef]
- Sha, A.X.; Wang, F.M.; Wu, C.J.; Dong, L.R.; Li, S.Y.; Chen, Y.X.; Zhu, L.X. Reaction between Lanthanum and Phosphorus in Steel. J. Chin. Soc. Rare Earths 2000, 18, 52–54. [Google Scholar]
- Chen, J.F.; An, S.L.; Zhao, W.G.; Song, X.W. Research on the effects of lanthanum and phosphorus in the steel. Univ. Sci. Technol. 2008, 27, 236–240. [Google Scholar] [CrossRef]
- Xiao, J.G.; Cheng, H.J.; Wang, F.M. Effects of rare earth in ship hull plate steel on its microstructure and low temperature toughness. Rare Earths 2010, 31, 52–58. [Google Scholar] [CrossRef]
- Xing, P.F.; Li, F.; Guo, J.; Tu, G.F. High temperature dephosphorus behavior of Baotou mixed rare earth concentrate with carbon. J. Rare Earths 2010, 28, 194–197. [Google Scholar] [CrossRef]
- Meng, D.L.; Wang, M.; Feng, Z.Y.; Xia, C.; Zhao, Y.Y.; Huang, X.W. Behavior of phase transformation of Baotou mixed rare earth concentrate during oxidation roasting. J. Rare Earths 2022, 40, 981–987. [Google Scholar] [CrossRef]
- Yang, Q.X.; Liao, B.; Cui, Z.Q.; Yao, M.; Wan, X. Effect of freezing point on RE inclusion as heterogeneous nucleation of primary austenite in FeC alloys. Chin. J. Mater. Res. 1999, 13, 353–358. [Google Scholar]
- Yang, Y.K.; Wang, Y.; Zhu, J.; Li, X.M.; Zhan, D.P. Effect of Zr Treatment on Inclusion and Solidification Microstructure in Ti Deoxidized Low Carbon Microalloyed Steel. JOM 2023, 75, 2841–2852. [Google Scholar] [CrossRef]
- Heo, Y.U.; Lee, S.Y.; Cho, J.W.; Heo, N.H. Effects of Ce and P addition on as-cast structure and formation mechanism of cerium compounds in Ce-added TWIP steels. Mater. Charact. 2016, 120, 234–243. [Google Scholar] [CrossRef]
- Li, Y.; Sun, M.; Jiang, Z.H.; Chen, C.Y.; Chen, K.; Huang, X.F.; Sun, S.; Li, H.B. Inclusion Modification in C104Cr Saw Wire Steel with Different Cerium Content. Metals 2019, 9, 54. [Google Scholar] [CrossRef]
- Li, G.; Lan, P.; Zhang, J.Q. Solidification structure refinement in TWIP steel by Ce inoculation. Acta Metall. Sin. 2020, 56, 704–714. [Google Scholar] [CrossRef]
- Li, Y.B.; Wang, F.M.; Li, C.R.; Song, B.; Cao, W.K. Effect of cerium on pitting resistance of low sulphur ferritic stainless steels. Rare Earths 2010, 31, 30–34. [Google Scholar] [CrossRef]
- Li, D.Z.; Wang, P.; Chen, X.Q.; Fu, P.X.; Luan, Y.K.; Hu, X.Q.; Liu, H.W.; Sun, M.W.; Chen, Y.; Cao, Y.F.; et al. Low-oxygen rare earth steels. Nat. Mater. 2022, 21, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.C.; Wang, Y.; Pan, Z.Y.; Yu, L.L. Influence of rare earth nanoparticles and inoculants on performance and microstructure of high chromium cast iron. J. Rare Earths 2012, 30, 283–288. [Google Scholar] [CrossRef]
Case | Mass of Steel Sample g | Ce Theoretical Addition wt% | Actual Tested Ce Content wt% | Ce Yield % |
---|---|---|---|---|
T0 | 1302.83 | 0 | 0 | |
T1 | 1350.8 | 0.040 | 0.011 | 27.6 |
T2 | 1243.4 | 0.041 | 0.017 | 41.5 |
T3 | 1258.3 | 0.083 | 0.075 | 90.4 |
C | Si | Mn | P | S | Cr | O | N | Ni | Mo | Ce | |
---|---|---|---|---|---|---|---|---|---|---|---|
T0 | 0.56 | 1.45 | 0.68 | 0.0094 | 0.0055 | 0.71 | 0.0012 | 0.0038 | 0.01 | 0.01 | 0 |
T1 | 0.55 | 1.46 | 0.67 | 0.0092 | 0.0054 | 0.69 | 0.0010 | 0.0039 | 0.01 | 0.01 | 0.011 |
T2 | 0.56 | 1.47 | 0.68 | 0.0091 | 0.0048 | 0.70 | 0.0010 | 0.0036 | 0.01 | 0.01 | 0.017 |
T3 | 0.56 | 1.46 | 0.67 | 0.0091 | 0.0055 | 0.70 | 0.0011 | 0.0040 | 0.01 | 0.01 | 0.075 |
Reaction | ΔGθ/J·mol−1 | ΔGθ Value /J·mol−1 |
---|---|---|
[Ce] + 2[O] = CeO2(s) | −854,270 + 250T | −386,020 |
[Ce] + 3/2[O] = 1/2Ce2O3(s) | −715,560 + 180T | −378,420 |
[Ce] + [O] + 1/2[S] = 1/2Ce2O2S(s) | −676,505 + 164T | −366,149 |
[Ce] + [S] = CeS(s) | −422,780 + 121T | −196,147 |
[Ce] + 3/2[S] = 1/2Ce2S3(s) | −537,290 + 164T | −230,118 |
[Ce] + 4/3[S] = 1/3Ce3S4(s) | −498,480 + 146.3T | −224,460 |
[Ce] + [P] = CeP(s) | −420,073 + 143.29T | –151,691 |
[Mn] + [S] = MnS(l) | −131,624 + 79.07T | 16,474 |
[Mn] + [S] = MnS(s) | −158,365 + 93.996T | 17,689 |
[Ce] + MnS(s) = CeS(s) + [Mn] | −264,415 + 27.004T | −213,837 |
[Ce] + 3/2MnS(s) = 1/2Ce2S3(s) + 3/2[Mn] | −299,742.5 + 23.006T | −256,652 |
[Ce] + 4/3MnS(s) = 1/3Ce3S4(s) + 4/3[Mn] | −287,326.7 + 20.972T | −248,046 |
C | Si | Mn | P | S | Cr | |
---|---|---|---|---|---|---|
S | 0.11 | 0.063 | −0.026 | 0.029 | −0.046 | −0.011 |
Mn | −0.07 | −0.0327 | 0 | −0.0035 | −0.048 | 0.0039 |
Ce | −0.077 | – | 0.13 | 1.77 | −39.8 | – |
P | 0.13 | 0.12 | 0 | 0.062 | −0.028 | −0.03 |
O | −0.45 | −0.131 | −0.021 | 0.07 | −0.133 | −0.04 |
Al | V | O | N | Ca | Mg | |
S | 0.035 | −0.016 | −0.27 | 0.01 | −110 | −1.82 |
Mn | 0.07 | 0.0057 | −0.083 | −0.091 | −0.023 | – |
Ce | −2.25 | −0.33 | −5.03 | −6.599 | – | – |
P | – | – | 0.13 | 0.094 | – | – |
O | −3.9 | −0.3 | −0.2 | 0.057 | −271 | – |
Ti | Mo | B | Ni | Cu | Ce | |
S | −0.18 | 0.0027 | 0.13 | 0 | −0.0084 | −0.856 |
Mn | −0.05 | 0.0045 | 0.22 | −0.0071 | – | 0.054 |
Ce | −3.62 | – | – | – | −0.486 | −0.003 |
P | – | – | – | 0.0002 | 0.024 | – |
O | −0.6 | 0.0035 | −2.6 | 0.006 | −0.013 | −0.57 |
Scheme | ai | ||||
---|---|---|---|---|---|
aCe | aO | as | aMn | aP | |
T1 (0.011%Ce) | 7.02 × 10−3 | 2.59 × 10−4 | 6.57 × 10−3 | 0.5518 | 0.01517 |
T2 (0.017% Ce) | 1.15 × 10−2 | 2.57 × 10−4 | 5.77 × 10−3 | 0.5522 | 0.01521 |
T3 (0.075% Ce) | 4.74 × 10−2 | 2.68 × 10−4 | 5.90 × 10−3 | 0.5562 | 0.01526 |
Reaction | No. | ΔG J·mol−1 | ||
---|---|---|---|---|
T1 | T2 | T3 | ||
[Ce] + 2[O] = CeO2(s) | (1) | −51,545 | −59,035 | −82,322 |
[Ce] + 3/2[O] = 1/2Ce2O3(s) | (2) | −108,260 | −115,786 | −138,773 |
[Ce] + [O] + 1/2[S] = 1/2Ce2O2S(s) | (3) | −121,178 | −127,731 | −150,586 |
[Ce] + [S] = CeS(s) | (4) | −40,679 | −46,296 | −68,720 |
[Ce] + 3/2[S] = 1/2Ce2S3(s) | (5) | −35,524 | −40,132 | −62,724 |
[Ce] + 4/3[S] = 1/3Ce3S4(s) | (6) | −42,908 | −47,852 | −70,388 |
[Ce] + MnS(s) = CeS(s) + [Mn] | (7) | −145,881 | −153,502 | −175,478 |
[Ce] + 3/2MnS(s) = 1/2Ce2S3(s) + 3/2[Mn] | (8) | −193,326 | −200,941 | −222,862 |
[Ce] + 4/3MnS(s) = 1/3Ce3S4(s) + 4/3[Mn] | (9) | −183,177 | −190,794 | −212,733 |
[Ce] + [P] = CeP(s) | (10) | −9246 | −16,973 | −39,079 |
[Mn] + [S] = MnS(l) | (11) | 25,733 | 25,721 | 25,609 |
[Mn] + [S] = MnS(s) | (12) | 26,948 | 26,936 | 26,824 |
Content | Ce2O3 | CeS | Ce2S3 | Ce3S4 | Ce2O2S |
---|---|---|---|---|---|
Melting point °C | 2177 | 2099 | 2149 | 2080 ± 30 | 1949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Cai, S.; Lan, P.; Ma, Y.; Wang, Y.; Wang, K. Effect of Cerium Content on Non–Metallic Inclusions and Solidification Microstructure in 55SiCr Spring Steel. Materials 2024, 17, 5450. https://doi.org/10.3390/ma17225450
Tang H, Cai S, Lan P, Ma Y, Wang Y, Wang K. Effect of Cerium Content on Non–Metallic Inclusions and Solidification Microstructure in 55SiCr Spring Steel. Materials. 2024; 17(22):5450. https://doi.org/10.3390/ma17225450
Chicago/Turabian StyleTang, Haiyan, Sen Cai, Peng Lan, Yu Ma, Yuhang Wang, and Kaimin Wang. 2024. "Effect of Cerium Content on Non–Metallic Inclusions and Solidification Microstructure in 55SiCr Spring Steel" Materials 17, no. 22: 5450. https://doi.org/10.3390/ma17225450
APA StyleTang, H., Cai, S., Lan, P., Ma, Y., Wang, Y., & Wang, K. (2024). Effect of Cerium Content on Non–Metallic Inclusions and Solidification Microstructure in 55SiCr Spring Steel. Materials, 17(22), 5450. https://doi.org/10.3390/ma17225450