Swelling Behavior of Acrylate-Based Photoresist Polymers Containing Cycloaliphatic Groups of Various Sizes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of an HPMA–GBLMA–CHMA (HGC) Copolymer
2.3. Synthesis of an HPMA-GBLMA-IBOA (HGI) Copolymer
2.4. Synthesis of an HPMA-GBLMA-TCDMA (HGT) Copolymer
2.5. Lithography Process
2.6. Determination of the Swelling Ratio
2.7. Characterization
3. Results and Discussion
3.1. Characterization of the Copolymers
3.2. Evaluation of the Swelling Effect
3.3. Lithographic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ito, H.; Willson, C.G. Chemical amplification in the design of dry developing resist materials. Polym. Eng. Sci. 1983, 23, 1012–1018. [Google Scholar] [CrossRef]
- Ito, H. Dissolution behavior of chemically amplified resist polymers for 248-, 193-, and 157-nm lithography. IBM J. Res. Dev. 2001, 45, 683–695. [Google Scholar] [CrossRef]
- Ito, H. Chemical amplification resists: Inception, implementation in device manufacture, and new developments. J. Polym. Sci. Part A Polym. Chem. 2003, 41, 3863–3870. [Google Scholar] [CrossRef]
- Barkakaty, B.; Matsumoto, K.; Endo, T. Synthesis and radical polymerization of adamantyl methacrylate monomers having hemiacetal moieties. Macromolecules 2009, 42, 9481–9485. [Google Scholar] [CrossRef]
- Moon, S.-Y.; Kim, J.-M. Chemistry of photolithographic imaging materials based on the chemical amplification concept. J. Photochem. Photobiol. C Photochem. Rev. 2007, 8, 157–173. [Google Scholar] [CrossRef]
- Lawson, R.A.; Robinson, A.P. Overview of materials and processes for lithography. In Frontiers of Nanoscience; Elsevier: Amsterdam, The Netherlands, 2016; Volume 11, pp. 1–90. [Google Scholar]
- Kim, S.-H.; Kim, S.-T. Technology trends for photoresist and research on photo acid generator for chemical amplified photoresist. J. Chosun Nat. Sci. 2009, 2, 252–264. [Google Scholar]
- Shida, N.; Ushirogouchi, T.; Asakawa, K.; NAKASE, M. Novel ArF excimer laser resists based on menthyl methacrylate terpolymer. J. Photopolym. Sci. Technol. 1996, 9, 457–464. [Google Scholar] [CrossRef]
- Kim, S.T.; Kim, J.B.; Chung, C.M.; Ahn, K.D. Polymerization of N-(tert-butyldimethylsilyloxy) maleimide and applications of the polymers as resist materials. J. Appl. Polym. Sci. 1997, 66, 2507–2516. [Google Scholar] [CrossRef]
- Hesp, S.A.; Hayashi, N.; Ueno, T. Tetrahydropyranyl-and furanyl-protected polyhydroxystyrene in chemical amplification systems. J. Appl. Polym. Sci. 1991, 42, 877–883. [Google Scholar] [CrossRef]
- Iwasa, S.; Maeda, K.; Nakano, K.; Ohfuji, T.; Hasegawa, E. Design and characterization of alicyclic polymers with alkoxy-ethyl protecting groups for arf chemically amplified resists. J. Photopolym. Sci. Technol. 1996, 9, 447–456. [Google Scholar] [CrossRef]
- Novembre, A.; Liu, S. Chemistry and processing of resists for nanolithography. In Nanolithography; Woodhead Publishing: New Delhi, India, 2014; pp. 194–286. [Google Scholar]
- Takemoto, I.; Lee, Y.; Fuji, Y.; Yoshida, I.; Hashimoto, K.; Miyagawa, T.; Yamaguchi, S.; Takahashi, K.; Konishi, S. Tailoring thermal property of ArF resists resins through monomer structure modification for sub-70-nm contact hole application by reflow process. Adv. Resist Technol. Process. XXII 2005, 5753, 584–591. [Google Scholar]
- Takahashi, M.; Takechi, S.; Kaimoto, Y.; Hanyu, I.; Abe, N.; Nozaki, K. Evaluation of chemically amplified resist based on adamantyl methacrylate for 193-nm lithography. Adv. Resist Technol. Process. XII 1995, 2438, 422–432. [Google Scholar]
- Kaimoto, Y.; Nozaki, K.; Takechi, S.; Abe, N. Alicyclic polymer for ArF and KrF excimer resist based on chemical amplification. Adv. Resist Technol. Process. IX 1992, 1672, 66–73. [Google Scholar]
- Kim, J.-B.; Kim, J.-Y.; Jung, M.-H. Synthesis of copolymers containing 3-hydroxycyclohexyl methacrylate and their application as ArF excimer laser resists. Polymer 1999, 40, 273–276. [Google Scholar] [CrossRef]
- Allen, R.D.; Wallraff, G.M.; Dipietro, R.A.; Hofer, D.C.; Kunz, R.R. Single layer resists with enhanced etch resistance for 193 nm lithography. J. Photopolym. Sci. Technol. 1994, 7, 507–516. [Google Scholar] [CrossRef]
- Lee, J.; Aoai, T.; Kondo, S.i.; Miyagawa, N.; Takahara, S.; Yamaoka, T. Negative-working photoresist of methacrylate polymers based on the transesterification of the 2-hydroxyethyl group in the presence of an acid. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 1858–1867. [Google Scholar] [CrossRef]
- Sekiguchi, A.; Konishi, H.; Isono, M. Observation of swelling behavior of ArF resist during development by using QCM method (2). J. Photopolym. Sci. Technol. 2012, 25, 467–472. [Google Scholar] [CrossRef]
- Diakoumakos, C.D.; Raptis, I.; Tserepi, A.; Argitis, P. Negative (meth) acrylate resist materials based on novel crosslinking chemistry. Microelectron. Eng. 2001, 57, 539–545. [Google Scholar] [CrossRef]
- Naito, T.; Takahashi, M.; Ohfuji, T.; Sasago, M. Negative-type chemically amplified resists for ArF excimer laser lithography. In Proceedings of the Advances in Resist Technology and Processing XV, Santa Clara, CA, USA, 22–27 February 1998; pp. 503–511. [Google Scholar]
- Yildirim, E.; Cimen, D.; Zengin, A.; Caykara, T. Synthesis of poly (N-(2-hydroxypropyl) methacrylamide) brushes by interface-mediated RAFT polymerization. RSC Adv. 2016, 6, 45259–45264. [Google Scholar] [CrossRef]
- Asakura, T. Studies on Photoacid Generators for the Next-Generation Photolithography; Hokkaido University: Sapporo, Japan, 2014. [Google Scholar]
- Matsumoto, A.; Mizuta, K.; Otsu, T. Synthesis and thermal properties of poly (cycloalkyl methacrylate) s bearing bridged-and fused-ring structures. J. Polym. Sci. Part A Polym. Chem. 1993, 31, 2531–2539. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Zhang, W. Synthesis of diblock copolymer nano-assemblies by PISA under dispersion polymerization: Comparison between ATRP and RAFT. Polym. Chem. 2017, 8, 6407–6415. [Google Scholar] [CrossRef]
- Ikemoto, N.M.S. Process for Producing β-hydroxy-η-butyrolactone Derivatives and β-(meth)acryloyloxy-η-butyrolactone Derivatives. WO1999033817A1, 8 July 1999. [Google Scholar]
- Fang, C.; Gao, Y.; Zhou, F. Effect of cyclohexyl methacrylate (CHMA) on the comprehensive properties of acrylate emulsion pressure sensitive adhesives. J. Adhes. Sci. Technol. 2021, 35, 1558–1575. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Song, T.; Wu, R.; Zhao, W.; Huo, F. Synthesis of Acrylate Dual-Tone Resists and the Effect of Their Molecular Weight on Lithography Performance and Mechanism: An Investigation. Materials 2023, 16, 2331. [Google Scholar] [CrossRef]
- Tsai, C.-W.; Wu, K.-H.; Wang, J.-C.; Shih, C.-C. Synthesis, characterization, and properties of petroleum-based methacrylate polymers derived from tricyclodecane for microelectronics and optoelectronics applications. J. Ind. Eng. Chem. 2017, 53, 143–154. [Google Scholar] [CrossRef]
- Rajdeo, K.; Ponrathnam, S.; Pardeshi, S.; Chavan, N.; Bhongale, S.; Harikrishna, R. Ambient temperature photocopolymerization of tetrahydrofurfuryl methacrylate and isobornyl methacrylate: Reactivity ratios and thermal studies. J. Macromol. Sci. Part A 2015, 52, 982–991. [Google Scholar] [CrossRef]
- Salavagione, H.J.; Acevedo, D.F.; Miras, M.C.; Motheo, A.J.; Barbero, C.A. Comparative study of 2-amino and 3-aminobenzoic acid copolymerization with aniline synthesis and copolymer properties. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 5587–5599. [Google Scholar] [CrossRef]
- Sohn, H.-S.; Cha, S.-H.; Lee, W.-K.; Kim, D.-G.; Yun, H.-J.; Kim, M.-S.; Kim, B.-D.; Kim, Y.-H.; Lee, J.-W.; Kim, J.-S. Synthesis of ArF photoresist polymer composed of three methacrylate monomers via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromol. Res. 2011, 19, 722–728. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.-G.; Vesters, Y.; Severi, J.; Kim, M.; De Simone, D.; Oh, H.-K.; Hur, S.-M. Molecular modeling of euv photoresist revealing the effect of chain conformation on line-edge roughness formation. Polymers 2019, 11, 1923. [Google Scholar] [CrossRef]
- Li, J.; Wu, T.; Zhao, J.; Xue, H. Synthesis of a PCST-containing acrylic polymers and its application in negative-tone photoresist. Mater. Lett. 2023, 345, 134426. [Google Scholar] [CrossRef]
- Rodríguez-Cantó, P.J.; Nickel, U.; Abargues, R. Understanding acid reaction and diffusion in chemically amplified photoresists: An approach at the molecular level. J. Phys. Chem. C 2011, 115, 20367–20374. [Google Scholar] [CrossRef]
- Miyabayashi, T. Process for Producing Encapsulated Product, and Encapsulated Product. U.S. Patent No. 7,906,567, 15 March 2011. [Google Scholar]
- Zeggai, N.; Youcef, B.D.; Dubois, F.; Bouchaour, T.; Supiot, P.; Bedjaoui, L.; Maschke, U. Analysis of dynamic mechanical properties of photochemically crosslinked poly (isobornylacrylate-co-isobutylacrylate) applying WLF and Havriliak-Negami models. Polym. Test. 2018, 72, 432–438. [Google Scholar] [CrossRef]
- Albalak, R.J.; Capel, M.S.; Thomas, E.L. Solvent swelling of roll-cast triblock copolymer films. Polymer 1998, 39, 1647–1656. [Google Scholar] [CrossRef]
- Seok, W.C.; Leem, J.T.; Song, H.J. Acrylic pressure-sensitive adhesives based on ethylene glycol acrylate for flexible display application: Highly elastic and recoverable properties. Polym. Test. 2022, 108, 107491. [Google Scholar] [CrossRef]
- Wu, K.-H.; Tsai, C.-W.; Huang, W.-C.; Hung, W.-C. Structural design and characterization of tricycloalkyl-containing methacrylate with methyl methacrylate copolymers. Mater. Sci. Eng. B 2021, 267, 115088. [Google Scholar] [CrossRef]
- Cesaria, M.; Arima, V.; Manera, M.G.; Rella, R. Practical strategy to realistically measure the swelling ratio of poly (dimethylsiloxane) without underestimation due to the solvent volatility. Polymer 2017, 113, 187–192. [Google Scholar] [CrossRef]
- Inui, T.; Sato, E.; Matsumoto, A. Pressure-sensitive adhesion system using acrylate block copolymers in response to photoirradiation and postbaking as the dual external stimuli for on-demand dismantling. ACS Appl. Mater. Interfaces 2012, 4, 2124–2132. [Google Scholar] [CrossRef] [PubMed]
Polymer | Molar Feed Ratios (Copolymer Composition) | Mw (g/mol) | PDI | ||||
---|---|---|---|---|---|---|---|
HPMA | GBLMA | CHMA | IBOA | TCDMA | |||
HGC | 20 (15) | 40 (28) | 40 (57) | - | - | 18,712 | 2.44 |
HGI | 20 (17) | 40 (31) | - | 40 (52) | - | 20,205 | 2.58 |
HGT | 20 (21) | 40 (37) | - | - | 40 (42) | 19,572 | 2.54 |
Polymer | 2θ1 (°) | 2θ2 (°) | d-Spacing at 2θ1 (Å) | d-Spacing at 2θ2 (Å) |
---|---|---|---|---|
HGC | 16.96 | 18.04 | 5.22 | 4.91 |
HGI | 15.54 | 15.99 | 5.70 | 5.54 |
HGT | 16.22 | 16.74 | 5.46 | 5.29 |
Polymer | Thickness (nm) | ||
---|---|---|---|
TMAH | Organic Solvent | ||
HGC | Before | 346 | 312 |
After | - | 244 | |
HGI | Before | 312 | 254 |
After | - | - | |
HGT | Before | 291 | 306 |
After | - | 118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-J.; Kim, J.; Lee, G.-H.; Hyeon, J.; Choi, Y.; Cho, N. Swelling Behavior of Acrylate-Based Photoresist Polymers Containing Cycloaliphatic Groups of Various Sizes. Materials 2024, 17, 5465. https://doi.org/10.3390/ma17225465
Lee C-J, Kim J, Lee G-H, Hyeon J, Choi Y, Cho N. Swelling Behavior of Acrylate-Based Photoresist Polymers Containing Cycloaliphatic Groups of Various Sizes. Materials. 2024; 17(22):5465. https://doi.org/10.3390/ma17225465
Chicago/Turabian StyleLee, Choong-Jae, Jinyoung Kim, Geon-Ho Lee, Jayoung Hyeon, Yura Choi, and Namchul Cho. 2024. "Swelling Behavior of Acrylate-Based Photoresist Polymers Containing Cycloaliphatic Groups of Various Sizes" Materials 17, no. 22: 5465. https://doi.org/10.3390/ma17225465
APA StyleLee, C. -J., Kim, J., Lee, G. -H., Hyeon, J., Choi, Y., & Cho, N. (2024). Swelling Behavior of Acrylate-Based Photoresist Polymers Containing Cycloaliphatic Groups of Various Sizes. Materials, 17(22), 5465. https://doi.org/10.3390/ma17225465