Influence of the Cooling Temperature on the Surface Quality in Integrated Additive and Subtractive Manufacturing of Aluminum Alloy
Abstract
:1. Introduction
2. Materials and Procedure
2.1. Materials
2.2. Experimental Setup
2.3. Experimental Procedure
2.4. Monitoring and Characterization Methods
3. Results
3.1. Variation Tendency of Temperature During Additive Manufacturing
3.2. Variation Tendency of Temperature During Subtractive Manufacturing
3.3. Surface Morphology and Defects
3.4. Surface Roughness
3.5. Chip and Interface Microstructure
3.6. Tool Vibration and Wear
4. Discussion
4.1. Temperature Change Behavior in Additive–Subtractive Manufacturing
4.2. Intervention Time of the Milling During the ASM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, H.; Wu, L.; Wei, H.; Cai, J.; Luo, K.; Xu, X.; Lu, J. Microstructural evolution and tensile property enhancement of remanufactured Ti6Al4V using hybrid manufacturing of laser directed energy deposition with laser shock peening. Addit. Manuf. 2022, 55, 102877. [Google Scholar] [CrossRef]
- Su, Y.; Xu, G.; Xu, X.; Zhang, H.; Luo, K.; Lu, J. Melt pool control-assisted additive manufacturing of thin-walled parts. Int. J. Mech. Sci. 2024, 280, 109519. [Google Scholar] [CrossRef]
- Tang, Z.-J.; Liu, W.-W.; Wang, Y.-W.; Saleheen, K.M.; Liu, Z.-C.; Peng, S.-T.; Zhang, Z.; Zhang, H.-C. A review on in situ monitoring technology for directed energy deposition of metals. Int. J. Adv. Manuf. Technol. 2020, 108, 3437–3463. [Google Scholar] [CrossRef]
- Feldhausen, T.; Raghavan, N.; Saleeby, K.; Love, L.; Kurfess, T. Mechanical properties and microstructure of 316L stainless steel produced by hybrid manufacturing. J. Mater. Process. Technol. 2021, 290, 116970. [Google Scholar] [CrossRef]
- Lv, J.; Liang, Y.; Xu, X.; Xu, G.; Zhang, H.; Lu, H.; Luo, K.; Cai, J.; Lu, J. Performance-control-orientated hybrid metal additive manufacturing technologies: State of the art, challenges, and future trends. Int. J. Extrem. Manuf. 2024, 6, 032009. [Google Scholar] [CrossRef]
- Weiss, L.; Prinz, F.; Neplotnik, G.; Padmanabhan, K.; Schultz, L.; Merz, R. Shape deposition manufacturing of wearable computers. Eng. Comput. Sci. 1997, 16, 239–248. [Google Scholar]
- Xu, X.; Du, J.; Lu, H.; Su, Y.; Xing, F.; Luo, K.; Lu, J. High-performance functional coatings manufactured by integrated extremely high-speed-rate laser directed energy deposition with interlayer remelting. Int. J. Mach. Tools Manuf. 2024, 200, 104174. [Google Scholar] [CrossRef]
- Tian, S.; Wang, Z.; Wang, Z.; Luo, K.; Lu, J. The mechanism of anisotropic micro-milling properties in additively manufactured Ti-6Al-4V alloy. J. Mater. Process. Technol. 2023, 322, 118190. [Google Scholar] [CrossRef]
- Djogo, G.; Li, J.; Ho, S.; Haque, M.; Ertorer, E.; Liu, J.; Song, X.; Suo, J.; Herman, P.R. Femtosecond laser additive and subtractive micro-processing: Enabling a high-channel-density silica interposer for multicore fibre to silicon-photonic packaging. Int. J. Extrem. Manuf. 2019, 1, 045002. [Google Scholar] [CrossRef]
- Butt, J.; Hewavidana, Y.; Mohaghegh, V.; Sadeghi-Esfahlani, S.; Shirvani, H. Hybrid manufacturing and experimental testing of glass fiber enhanced thermoplastic composites. J. Manuf. Mater. Process. 2019, 3, 96. [Google Scholar] [CrossRef]
- Du, W.; Bai, Q.; Zhang, B. A novel method for additive/subtractive hybrid manufacturing of metallic parts. Procedia Manuf. 2016, 5, 1018–1030. [Google Scholar] [CrossRef]
- Xie, Y.; Tong, J.; Fu, Y.; Sheng, Z. Machining scheme of aviation bearing bracket based on additive and subtractive hybrid manufacturing. J. Mech. Sci. Technol. 2020, 34, 3775–3790. [Google Scholar] [CrossRef]
- Chernovol, N.; Sharma, A.; Tjahjowidodo, T.; Lauwers, B.; Van Rymenant, P. Machinability of wire and arc additive manufactured components. CIRP J. Manuf. Sci. Technol. 2021, 35, 379–389. [Google Scholar] [CrossRef]
- Alexeev, V.; Balyakin, A.; Khaimovich, A. Influence of the direction of selective laser sintering on machinability of parts from 316L steel. In Proceedings of IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2024; p. 012120. [Google Scholar]
- Bai, Y.; Lee, Y.J.; Zhao, C.; Yan, Q.; Guo, Y.; Shang, Y.; Wang, H. Unique cellular microstructure-enabled hybrid additive and subtractive manufacturing of aluminium alloy mirror with high strength. J. Mater. Process. Technol. 2023, 320, 118095. [Google Scholar] [CrossRef]
- Jeon, Y.; Pfefferkorn, F. Effect of laser preheating the workpiece on micro end milling of metals. J. Manuf. Sci. Eng. 2008, 130, 011004. [Google Scholar] [CrossRef]
- Hedberg, G.; Shin, Y.; Xu, L. Laser-assisted milling of Ti-6Al-4V with the consideration of surface integrity. Int. J. Adv. Manuf. Technol. 2015, 79, 1645–1658. [Google Scholar] [CrossRef]
- Grzesik, W. Hybrid additive and subtractive manufacturing processes and systems: A review. J. Mach. Eng. 2018, 18, 5–24. [Google Scholar] [CrossRef]
- Li, S.; Zhang, B.; Bai, Q. Effect of temperature buildup on milling forces in additive/subtractive hybrid manufacturing of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2020, 107, 4191–4200. [Google Scholar] [CrossRef]
- Lee, I.; Bajpai, V.; Moon, S.; Byun, J.; Lee, Y.; Park, H.W. Tool life improvement in cryogenic cooled milling of the preheated Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 2015, 79, 665–673. [Google Scholar] [CrossRef]
- Tang, Z.; Wei, Q.; Gao, Z.; Yang, H.; Wang, A.; Wan, L.; Luo, C.; Wu, Y.; Wang, H.; Wang, H. 2000W blue laser directed energy deposition of AlSi7Mg: Process parameters, molten pool characteristics, and appearance defects. Virtual Phys. Prototyp. 2023, 18, 2120405. [Google Scholar] [CrossRef]
- Li, C.; Liu, X.; Xu, M.; Chen, J.; Li, S.; Li, P.; Ko, T.J. Formation Mechanism and Adhesion Evaluation of Debris in Ti–6Al–4V Alloy Turning. Int. J. Precis. Eng. Manuf.-Green Technol. 2023, 10, 1189–1205. [Google Scholar] [CrossRef]
- Puvanesan, M.; Rahman, M.; Najiha, M.; Kadirgama, K. Experimental investigation of minimum quantity lubrication on tool wear in aluminum alloy 6061-t6 using different cutting tools. Int. J. Automot. Mech. Eng. 2014, 9, 1538–1549. [Google Scholar] [CrossRef]
- Wang, A.; Wei, Q.; Tang, Z.; Oliveira, J.P.; Leung, C.L.A.; Ren, P.; Zhang, X.; Wu, Y.; Wang, H.; Wang, H. Effects of hatch spacing on pore segregation and mechanical properties during blue laser directed energy deposition of AlSi10Mg. Addit. Manuf. 2024, 85, 104147. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Yao, G.; Wang, B.; Ren, X. Investigation of surface topography and its deterioration resulting from tool wear evolution when dry turning of titanium alloy Ti-6Al-4V. Tribol. Int. 2019, 135, 130–142. [Google Scholar] [CrossRef]
- Huang, X.; Bai, Q.; Li, Y.T.; Zhang, B. Machining finish of titanium alloy prepared by additive manufacturing. Appl. Mech. Mater. 2017, 872, 43–48. [Google Scholar] [CrossRef]
- Xavierarockiaraj, S.; Kuppan, P. Investigation of cutting forces, surface roughness and tool wear during Laser assisted machining of SKD11Tool steel. Procedia Eng. 2014, 97, 1657–1666. [Google Scholar] [CrossRef]
- Li, C.; Xu, M.; Yu, Z.; Huang, L.; Li, S.; Li, P.; Niu, Q.; Ko, T.J. Electrical discharge-assisted milling for machining titanium alloy. J. Mater. Process. Technol. 2020, 285, 116785. [Google Scholar] [CrossRef]
- Sun, T.; Chen, J.; Wu, Y.; Wang, M.; Fu, Y.; Wang, H.; Wang, H. Achieving excellent strength of the LPBF additively manufactured Al–Cu–Mg composite via in-situ mixing TiB2 and solution treatment. Mater. Sci. Eng. A 2022, 850, 143531. [Google Scholar] [CrossRef]
- Du, S.; Jiang, Z.; Zhang, D.; Wang, Z.; Li, N. Microstructure of plastic deformation layer on grinding surface of GH4169 alloy. J. Mech. Eng. 2015, 51, 63–68. [Google Scholar] [CrossRef]
- Habrat, W.; Krupa, K.; Markopoulos, A.P.; Karkalos, N.E. Thermo-mechanical aspects of cutting forces and tool wear in the laser-assisted turning of Ti-6Al-4V titanium alloy using AlTiN coated cutting tools. Int. J. Adv. Manuf. Technol. 2021, 115, 759–775. [Google Scholar] [CrossRef]
- Li, G.; Chandra, S.; Rashid, R.A.R.; Palanisamy, S.; Ding, S. Machinability of additively manufactured titanium alloys: A comprehensive review. J. Manuf. Process. 2022, 75, 72–99. [Google Scholar] [CrossRef]
- Zhang, P.; Li, S.; Zhang, Z. General relationship between strength and hardness. Mater. Sci. Eng. A 2011, 529, 62–73. [Google Scholar] [CrossRef]
- Tabor, D. The Hardness of Metals; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Liu, J.-X.; Shen, X.-Q.; Wu, Y.; Li, F.; Liang, Y.; Zhang, G.-J. Mechanical properties of hot-pressed high-entropy diboride-based ceramics. J. Adv. Ceram. 2020, 9, 503–510. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Wan, Y.; Zhou, S.; Cai, H.; Gu, M.; Li, D.; Li, W. Temperature-dependent hardness model of high-temperature materials can account for indentation size effect. Int. J. Refract. Met. Hard Mater. 2022, 108, 105957. [Google Scholar] [CrossRef]
- Mabrouki, T.; Girardin, F.; Asad, M.; Rigal, J.-F. Numerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351). Int. J. Mach. Tools Manuf. 2008, 48, 1187–1197. [Google Scholar] [CrossRef]
- Sun, S.; Brandt, M.; Dargusch, M.S. Characteristics of cutting forces and chip formation in machining of titanium alloys. Int. J. Mach. Tools Manuf. 2009, 49, 561–568. [Google Scholar] [CrossRef]
- Tang, Z.-J.; Liu, W.-W.; Zhu, L.-N.; Liu, Z.-C.; Yan, Z.-R.; Lin, D.; Zhang, Z.; Zhang, H.-C. Investigation on coaxial visual characteristics of molten pool in laser-based directed energy deposition of AISI 316L steel. J. Mater. Process. Technol. 2021, 290, 116996. [Google Scholar] [CrossRef]
Element | Si | Mg | Cu | Mn | Zn | Ni | Fe | TiB2 | Al |
---|---|---|---|---|---|---|---|---|---|
AlSi7Mg | 6.50~7.50 | 0.90~1.50 | ≤0.10 | ≤0.10 | ≤0.10 | ≤0.10 | ≤0.10 | 1.50~2.50 | Balanced |
Laser power (W) | Scanning speed (mm/s) | Powder feed rate (g/min) | Z-axis increment (mm) | Hatch spacing (mm) |
1600 | 18 | 3 | 0.3 | 1.6 |
Shielding gas rate (L/h) | Carrier gas rate (L/h) | Sample dimension (mm × mm × mm) | Residence time between layers (s) | Residence time between tracks (s) |
600 | 240 | 20 × 20 × 10 | 30 | 0 |
Process Parameter | Value |
---|---|
Initial cooling temperature (°C) | 25, 100, 200, 300 |
Feed speed (mm/min) | 1000 |
Spindle speed (r/min) | 3000 |
milling depth (mm/layer) | 0.3 |
Temperature (°C) | 25 | 100 | 200 |
---|---|---|---|
Surface roughness (μm) | 3.617 | 2.413 | 2.729 |
3.584 | 2.335 | 2.678 | |
3.682 | 2.359 | 2.740 | |
3.619 | 2.382 | 2.857 | |
3.555 | 2.406 | 2.822 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhang, X.; Tang, Z.; Wei, Q.; Hu, K.; Lou, M.; Yan, L.; Hu, Y.; Cai, G.; Qi, H.; et al. Influence of the Cooling Temperature on the Surface Quality in Integrated Additive and Subtractive Manufacturing of Aluminum Alloy. Materials 2024, 17, 5496. https://doi.org/10.3390/ma17225496
Huang J, Zhang X, Tang Z, Wei Q, Hu K, Lou M, Yan L, Hu Y, Cai G, Qi H, et al. Influence of the Cooling Temperature on the Surface Quality in Integrated Additive and Subtractive Manufacturing of Aluminum Alloy. Materials. 2024; 17(22):5496. https://doi.org/10.3390/ma17225496
Chicago/Turabian StyleHuang, Jie, Xiaolin Zhang, Zijue Tang, Qianglong Wei, Kaiming Hu, Ming Lou, Li Yan, Yawei Hu, Guoshuang Cai, Huan Qi, and et al. 2024. "Influence of the Cooling Temperature on the Surface Quality in Integrated Additive and Subtractive Manufacturing of Aluminum Alloy" Materials 17, no. 22: 5496. https://doi.org/10.3390/ma17225496
APA StyleHuang, J., Zhang, X., Tang, Z., Wei, Q., Hu, K., Lou, M., Yan, L., Hu, Y., Cai, G., Qi, H., Wu, Y., Wang, H., & Wang, H. (2024). Influence of the Cooling Temperature on the Surface Quality in Integrated Additive and Subtractive Manufacturing of Aluminum Alloy. Materials, 17(22), 5496. https://doi.org/10.3390/ma17225496