Effect of Carbon Black Content and Firing Atmosphere on the Properties and Microstructure of Al2O3-SiC-C Castables
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Physical Properties of the Castables
3.2. High-Temperature Properties of ASC Castables
3.3. Phase Composition and Microstructures of the Samples
3.4. Discussion
4. Conclusions
- (1)
- On increasing the CB content from 0.5% to 2%, the cold strength and slag resistance of the ASC castables heat-treated in the RA are slightly increased; however, their porosity, hot strength, and thermal shock resistance are slightly reduced. After sintering in the OA, the cold strength, slag resistance and thermal shock resistance of the samples are slightly increased, but their hot strength is reduced. As for the samples fired in the WOA, the cold strength and hot strength are reduced; however, their thermal shock resistance and slag resistance gradually increase.
- (2)
- Regarding the samples with 1% CB addition, the CMOR values of the samples fired in the OA and RA at 1500 °C are higher (about 20 MPa), the TSR of the samples fired in the RA is the best (RSR: 85.4%), the HMOR of the samples tested in the OA is the highest (5.3 MPa), and the slag resistance of the samples in the OA is the best. The merit of the castables with 1% CB is in the RA > in the OA > in the WOA.
- (3)
- This is ascribed to the fact that more SiC whiskers form in the RA with a larger aspect ratio and finally develop a continuous network structure, thereby enhancing their cold strength, TSR, and slag resistance. The cold strength, hot strength, and slag resistance of sample CB1 tested in the OA are the highest, due to the liquid SiO2 formed by the oxidation of SiC being able to fill the pores and react with Al2O3 to form mullite, creating a strengthening effect; however, these effects are detrimental to the TSR.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Acronyms
CB | Carbon black |
RA | Reducing atmosphere |
OA | Oxidizing atmosphere |
WOA | Weak-oxidizing atmosphere |
BD | Bulk density |
AP | Apparent porosity |
ASC | Al2O3-SiC-C |
RSR | Residual strength ratio |
PLC | Permanent linear change |
TSR | Thermal shock resistance |
HMOR | Hot modulus of rupture |
CMOR | Cold modulus of rupture |
CMORst | Residual strength |
SL | Slag layer |
PL | Slag penetrated layer |
UL | Uncorroded layer |
References
- Ministry of Ecology and Environment of The People’s Republic of China. Annual Report on Solid Waste Pollution Prevention and Control in Large and Medium Sized Cities in China; Ministry of Ecology and Environment of The People’s Republic of China: Beijing, China, 2020.
- National Bureau of Statistics of China. China Statistical Yearbook of 2019; Chinese Statistical Bureau, China Statistical Press: Beijing, China, 2019. [Google Scholar]
- Prompt, N.; Ouedraogo, E. High temperature mechanical characterisation of an alumina refractory concrete for Blast Furnace main trough: Part I. General context. J. Eur. Ceram. Soc. 2008, 28, 2859–2865. [Google Scholar] [CrossRef]
- Wang, W.; Jia, M.; Che, X. Pretreatment of municipal solid waste incineration fly ash and preparation of solid waste source sulphoaluminate cementitious material. J. Hazard. Mater. 2020, 385, 121580. [Google Scholar]
- Li, X.; Zhang, C.; Li, Y.; Zhi, Q. The status of municipal solid waste incineration (MSWI) in China and its clean development. Energy Procedia. 2016, 104, 498–503. [Google Scholar] [CrossRef]
- Sun, X.; Li, J.; Zhao, X.; Zhu, B.; Zhang, G. A review on the management of municipal solid waste fly ash in American. Procedia Environ. Sci. 2016, 31, 535–540. [Google Scholar] [CrossRef]
- Zacco, A.; Borgese, L.; Gianoncelli, A.; Struis, R.P.; Depero, L.E.; Bontempi, E. Review of fly ash inertisation treatments and recycling. Environ. Chem. Lett. 2014, 12, 153–175. [Google Scholar] [CrossRef]
- Lindberg, D.; Molin, C.; Hupa, M. Thermal treatment of solid residues from WtE units: A review. Waste Manag. 2015, 37, 82–94. [Google Scholar] [CrossRef]
- Gu, Q.; Wu, W.; Jin, B. Investigation of thermal characteristics of municipal solid waste incineration fly ash under various atmospheres: A TG-FTIR study. Thermochim. Acta. 2019, 681, 178402. [Google Scholar] [CrossRef]
- Zhao, P.; Ni, G.; Jiang, Y.; Chen, L.; Chen, M.; Meng, Y. Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace. J. Hazard. Mater. 2010, 181, 580–585. [Google Scholar] [CrossRef]
- Yang, G.C.; Chuang, T.N.; Huang, C.W. Achieving zero waste of municipal incinerator fly ash by melting in electric arc furnaces while steelmaking. Waste Manag. 2017, 62, 160–168. [Google Scholar] [CrossRef]
- Pan, X.; Yan, J.; Xie, Z. Detoxifying PCDD/Fs and heavy metals in fly ash from medical waste incinerators with a DC double arc plasma torch. J. Environ. Sci. 2013, 25, 1362–1367. [Google Scholar] [CrossRef]
- Sperber, J.; Burgard, R.; Duennes, F.J. Innovative lining concepts for hazardous waste incineration. Refract. World Forum. 2012, 4, 85–89. [Google Scholar]
- Chen, D.; Huang, A.; Gu, H.; Zhang, S.; Shao, Z. Corrosion of Al2O3–Cr2O3 refractory lining for high-temperature solid waste incinerator. Ceram. Int. 2015, 41, 14748–14753. [Google Scholar] [CrossRef]
- Chen, D.; Gu, H.; Huang, A. Towards chrome-free lining for plasma gasifiers using the CA6-SiC castable based on high-temperature water vapor corrosion. Ceram. Int. 2019, 45, 12429–12435. [Google Scholar] [CrossRef]
- Chen, D.; Gu, H.; Huang, A.; Shao, Z. Towards chrome-free of high-temperature solid waste gasifier through in-situ SiC whisker enhanced silica sol bonded SiC castable. Ceram. Int. 2017, 43, 3330–3338. [Google Scholar] [CrossRef]
- Bie, C.; Sang, S.; Li, Y.; Zhu, T.; Xu, Y. Research of Al2O3-SiC-C refractories as chromia-free lining for gasifier. Ceram. Int. 2016, 42, 14161–14167. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, C.; Yu, C.; Wang, X.; Ding, J.; Zhu, H. Molten salt synthesis and characterization of SiC whiskers containing coating on graphite for application in Al2O3-SiC-C castables. J. Alloys Compd. 2019, 777, 26–33. [Google Scholar] [CrossRef]
- Zhao, L.; Yin, Y.; Yao, N.; Ma, H.; Zhang, S.; Liu, G.; Jia, Q. Preparation of core-shell SiC@ C powder via modified molten salt shielding technique. J. Chin. Ceram. Soc. 2023, 51, 635–640. [Google Scholar]
- Yin, Y.; Wang, S.; Zhang, S.; Cui, J.; Liu, X.; Jia, Q. Preparation of SiC coated graphite flake with much improved performance via a molten salt shielded method. Int. J. Appl. Ceram. Tec. 2022, 19, 1529–1539. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Y.; Chen, J.; Kang, S.; Ma, H.; Zhang, S.; Jia, Q. Large-Scale Fabrication of SiC-TiC@ C Powders via Modified Molten Salt Shielding Synthesis Technique and Their Effect on the Properties of Al2O3-MgO Castables. Materials 2023, 16, 5895. [Google Scholar] [CrossRef]
- Zhao, L.; Yin, Y.; Li, Y.; Ma, H.; Liu, X.; Zhang, S.; Jia, Q. Large-scale fabrication of TiC@ C powders and its effect on the properties of Al2O3-MgO-C castables. Int. J. Appl. Ceram. Tec. 2023, 20, 3626–3634. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, P.; Liu, X.; Cui, J.; Liu, X.; Zhang, S.; Jia, Q. Effect of modified coal tar pitch addition on the microstructure and properties of Al2O3-SiC-C castables for solid waste incinerators. Ceram. Int. 2022, 48, 20778–20790. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Wang, J.; Han, L.; Zhang, H.; Zhang, S. Catalytic preparation of graphitic carbon spheres for Al2O3-SiC-C castables. Ceram. Int. 2018, 44, 12940–12947. [Google Scholar] [CrossRef]
- Zang, Y.; Xiao, G.; Ding, D.; Chen, J.; Lei, C.; Luo, J.; Chong, X. Study on cobweb-like carbon nanotubes/calcium aluminate cement and its effect on the properties of Al2O3–SiC–C castables. Int. J. Appl. Ceram. Tec. 2022, 19, 557–568. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.; Wu, C.; Xu, H. Thermal conductivity and mechanical properties of carbon black filled silicone rubber. Polym Compos. 2014, 22, 393–400. [Google Scholar] [CrossRef]
- Wu, M.; Huang, A.; Yang, S.; Gu, H.; Fu, L.; Li, G.; Dong, H. Corrosion mechanism of Al2O3–SiC–C refractory by SiO2-MgO-based slag. Ceram. Int. 2020, 46, 28262–28267. [Google Scholar] [CrossRef]
- Zhou, P.; Qiu, X.; Luo, Z.; Liu, X.; Zhang, S.; Jia, Q. Effect of firing atmosphere on the microstructure and properties of Al2O3-SiC-C castables. Ceram. Int. 2021, 47, 14280–14289. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Chen, L.; Zhu, B. Matrix structure evolution and thermomechanical properties of carbon fiber-reinforced Al2O3-SiC-C castable composites. Mater. Res. Bull. 2015, 61, 201–206. [Google Scholar] [CrossRef]
- Long, T.; Gu, H.; Zhang, M.; Huang, A.; Jiang, Q.; Fu, L.; Chen, D.; Cao, J.; Li, L.; Qiu, W. Effect of pretreated Al-Si alloy powder on the microstructure and properties of Al2O3-SiC-C castables for iron runner. J. Alloys Compd. 2024, 986, 174138. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Zhang, H.; Pan, D.; Feng, Y.; Li, Y.; Wang, X.; Guo, Y. Enhancement and explosion-proof mechanism of aluminum fiber addition in Al2O3-SiC-C castables for iron runner. Ceram. Int. 2019, 45, 22723–22730. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, H.; Wang, Z.; Ma, Y.; Wang, X. Microstructure and enhanced slag resistance of Al2O3–SiC–C refractory castables with addition of ammonium metatungstate. Ceram. Int. 2023, 49, 23558–23566. [Google Scholar] [CrossRef]
- Lian, J.; Zhu, B.; Li, X.; Chen, P.; Fang, B. Effect of in situ synthesized SiC whiskers and mullite phases on the thermo-mechanical properties of Al2O3-SiC-C refractories. Ceram. Int. 2016, 42, 16266–16273. [Google Scholar] [CrossRef]
Raw Materials | Sample No. | Supplier | ||
---|---|---|---|---|
CB0.5 | CB1 | CB2 | ||
Brown alumina | 55 | 55 | 55 | Taiyue Abrasive Co., Qinyuan, China |
SiC | 33 | 32.5 | 31.5 | Yuancheng Co., Qinyang, China |
Micro-powders | 8 | 8 | 8 | Kaifeng Tenai Co., Kaifeng, China, Elkem Co., Shanghai, China |
Si fines | 2 | 2 | 2 | Rixin Co., Guangzhou, China |
Cement | 1.5 | 1.5 | 1.5 | Imery Co., Tianjin, China |
CB | 0.5 | 1 | 2 | Cofermin Co., Tianjin, China |
FS 20 | +0.2 | +0.2 | +0.2 | BASF Co., Ludwigshafen, Germany |
Samples | CB0.5 | CB1 | CB2 | |
---|---|---|---|---|
Pore size distribution/% | <1 μm | 24.2 | 67.7 | 70 |
1–10 μm | 67.3 | 24.9 | 22.5 | |
>10 μm | 8.5 | 7.4 | 7.5 | |
Median pore diameter/μm | 1.5 | 0.9 | 0.7 |
Firing Atmosphere | OA | WOA | RA | |
---|---|---|---|---|
Pore size distribution/% | <1 μm | 28.0 | 46.6 | 67.7 |
1–10 μm | 65.0 | 46 | 24.9 | |
>10 μm | 7.0 | 7.4 | 7.4 | |
Median pore diameter/μm | 1.5 | 1.1 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Q.; Chen, J.; He, M.; Sang, M.; Zhou, P.; Ma, H. Effect of Carbon Black Content and Firing Atmosphere on the Properties and Microstructure of Al2O3-SiC-C Castables. Materials 2024, 17, 5506. https://doi.org/10.3390/ma17225506
Jia Q, Chen J, He M, Sang M, Zhou P, Ma H. Effect of Carbon Black Content and Firing Atmosphere on the Properties and Microstructure of Al2O3-SiC-C Castables. Materials. 2024; 17(22):5506. https://doi.org/10.3390/ma17225506
Chicago/Turabian StyleJia, Quanli, Jing Chen, Mantang He, Mengyang Sang, Pingyi Zhou, and Haoxuan Ma. 2024. "Effect of Carbon Black Content and Firing Atmosphere on the Properties and Microstructure of Al2O3-SiC-C Castables" Materials 17, no. 22: 5506. https://doi.org/10.3390/ma17225506
APA StyleJia, Q., Chen, J., He, M., Sang, M., Zhou, P., & Ma, H. (2024). Effect of Carbon Black Content and Firing Atmosphere on the Properties and Microstructure of Al2O3-SiC-C Castables. Materials, 17(22), 5506. https://doi.org/10.3390/ma17225506