Application of Product of Vitrification of Asbestos-Cement Waste and CRT Glass Cullet as Reinforcing Phase in Surface Composites Produced by FSP Method
Abstract
:1. Introduction
2. Materials and Research Methodology
3. Methodology of Composite Production
4. Results and Discussion
4.1. Microstructural Studies
4.2. Hardness Measurements
4.3. Wear Resistance Tests
5. Conclusions
- The product of the vitrification of asbestos-cement waste and glass cullet from a CRT can be used as a reinforcing phase in the production of composites and constitutes a substitute material for other currently used materials.
- The introduction of vitrified particles into the AA7075 aluminum alloy matrix, combined with strong grain refinement, raised the hardness of the material by approximately 39%, from 97 HV0.1 to approximately 135 HV0.1.
- Favorable changes in the microstructure of the material increase the abrasive wear resistance of the vitrified-material-reinforced composite by 30.4% compared to the wear resistance of the AA7075 aluminum alloy.
- The use of vitrified material as a reinforcing phase allows a high-quality surface composite to be obtained. The use of the vitrified material as a strengthening phase in composites is therefore fully justified and advisable.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.; Bao, S.; Zhang, Y. Recycling of granite powder and waste marble produced from stone processing for the preparation of architectural glass–ceramic. Constr. Build. Mater. 2022, 346, 128408. [Google Scholar] [CrossRef]
- Marini, P.; Bellopede, R.; Zanotti, G.; Ramon, V. Waste of the secondary glass waste (glass waste): New solutions for a sustainable industrial recovery. In Proceedings of the 15th International Conference on Environmental Science and Technology, Rhodes, Greece, 31 August–2 September 2017. CEST2017_00488. [Google Scholar]
- Thives, L.P.; Ghisi, E.; Thives Júnior, J.J.; Vieira, A.S. Is asbestos still a problem in the world? A current review. J. Environ. Manag. 2022, 319, 115716. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Bonilla, J.P.; Cely-García, M.F.; Giraldo, M.; Comba, P.; Terracini, B.; Pasetto, R.; Marsili, D.; Ascoli, V.; Lysaniuk, B.; Rodríguez, M.C.; et al. An asbestos contaminated town in the vicinity of an asbestos-cement facility: The case study of Sibat’e, Colombia. Environ. Res. 2019, 176, 108464. [Google Scholar] [CrossRef] [PubMed]
- Szułczyńska, D. Determinants of the perception of asbestos. Saf. Fire Technol. 2019, 53, 144–161. [Google Scholar] [CrossRef]
- Łuniewski, S.; Rogowska, W.; Łozowicka, B.; Iwaniuk, P. Plants, Microorganisms and their metabolites in supporting asbestos detoxification–a biological perspective in asbestos treatment. Materials 2024, 17, 1644. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Zaremba, T.; Piotrowski, J.; Adamek, J. Thermal decomposition of different types of asbestos. J. Therm. Anal. Calorim. 2012, 109, 693–704. [Google Scholar] [CrossRef]
- Iwaszko, J. Making asbestos-cement products safe using heat treatment. Case Stud. Constr. Mater. 2019, 10, e00221. [Google Scholar] [CrossRef]
- Dellisanti, E.; Rossi, P.L.; Valdre, G. Remediation of asbestos containing materials by Joule heating vitrification performed in a pre-pilot apparatus. Inter. J. Miner. Process. 2009, 91, 61–67. [Google Scholar] [CrossRef]
- Kasai, G.; Goto, H.; Mase, Y. Vitrification treatment of asbestos waste with incineration ash of solid waste. High Temp. Mater. Proc. 2011, 30, 353–357. [Google Scholar] [CrossRef]
- Iwaszko, J.; Lubas, M.; Sitarz, M.; Zajemska, M.; Nowak, A. Production of vitrified material from hazardous asbestos-cement waste and CRT glass cullet. J. Clean. Prod. 2021, 317, 128345. [Google Scholar] [CrossRef]
- Kasprzyk, K.; Kordylewski, W.; Zacharczuk, W. Modification of fly-ash by vitrification. Arch. Combust. 2003, 23, 21–30. [Google Scholar]
- Colombo, P.; Brusatin, G.; Bernardo, E.; Scarinci, G. Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Curr. Opin. Solid State Mater. Sci. 2003, 7, 225–239. [Google Scholar] [CrossRef]
- Borowski, G. Vitrification process for sewage sludge treatment. In Environmental Engineering. Part IV; Pawłowski, A., Pawłowska, M., Pawłowski, L., Eds.; CRC Press Taylor & Francis Grp.: London, UK, 2013; pp. 185–190. [Google Scholar]
- Valderrama, D.M.A.; Cuaspud, J.A.G.; Roether, J.A.; Boccaccini, A.R. Development and characterization of glass-ceramics from combinations of slag, fly ash, and glass cullet without adding nucleating agents. Materials 2019, 12, 2032. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, J.; Smedskjaer, M.M.; Potuzak, M.; Yue, Y.Z. Role of elastic deformation in determining the mixed alkaline earth effect of hardness in silicate glasses. J. App. Phys. Lett. 2015, 117, 034903. [Google Scholar] [CrossRef]
- Mishra, R.S.; Mahoney, M.W. Friction stir processing: A new grain refinement technique to achieve high strain rate superplasticity in commercial alloys. Mater. Sci. Forum 2001, 357–359, 507–514. [Google Scholar]
- Thomas, W.M.; Nicholas, E.D.; Needham, J.C.; Murch, M.G.; Templesmith, P.; Dawes, C.J. International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8. December 1991. [Google Scholar]
- Janeczek, A.; Tomków, J.; Aghajani Derazkola, H.; Łyczkowska, K.; Fydrych, D. Effect of underwater friction stir welding parameters on AA5754 alloy joints: Experimental studies. Int. J. Adv. Manuf. Tech. 2024, 134, 5643–5655. [Google Scholar] [CrossRef]
- Mohammed, M.M.; Abdullah, M.E.; Rohim, M.N.M.; Kubit, A.; Aghajani Derazkola, H. AA5754–Al2O3 Nanocomposite Prepared by Friction Stir Processing: Microstructural Evolution and Mechanical Performance. J. Manuf. Mater. Process. 2024, 8, 58. [Google Scholar] [CrossRef]
- Iwaszko, J.; Kudła, K.; Fila, K. Technological aspects of friction stir processing of AlZn5.5MgCu aluminum alloy. Bull. Pol. Acad. Sci. Tech. Sci. 2018, 66, 713–719. [Google Scholar]
- Sato, Y.S.; Park, S.H.C.; Kokawa, H. Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metall. Mater. Trans. 2001, 32, 3033–3042. [Google Scholar] [CrossRef]
- Thangaraju, S.; Heilmaier, M.; Murty, B.S.; Vadlamani, S.S. On the estimation of true Hall-Petch constants and their role on the superposition law exponent in Al alloys. Adv. Eng. Mater. 2012, 14, 892–897. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, W.; Guo, X.; Yang, X.; Li, J.; Ren, J.; Xue, H.; Tang, F. Strengthening mechanism of NiCoAl alloy induced by nanotwin under Hall-Petch effect. Int. J. Mech. Sci. 2023, 255, 108478. [Google Scholar]
- Iwaszko, J.; Kudła, K. Evolution of microstructure and properties of air-cooled friction-stir-processed 7075 aluminum alloy. Materials 2022, 15, 2633. [Google Scholar] [CrossRef] [PubMed]
Sample | Element Content (wt%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CaO | SiO2 | MgO | Al2O3 | Fe2O3 | BaO | SrO | SO3 | K2O | Na2O | ZrO2 | Rest | |
ACW | 69.92 | 14.80 | 4.15 | 2.47 | 4.44 | - | - | 2.57 | 0.27 | - | - | 1.38 * |
CRT glass cullet | 0.10 | 60.49 | 0.05 | 3.05 | 0.06 | 8.37 | 7.77 | 0.13 | 6.24 | 9.49 | 2.57 | 1.68 ** |
Sample | Element Content (wt%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CaO | SiO2 | MgO | Al2O3 | Fe2O3 | BaO | SrO | SO3 | K2O | Na2O | ZrO2 | Rest | |
Vitrified material | 34.01 | 29.52 | 1.59 | 3.91 | 2.31 | 5.86 | 11.09 | 0.19 | 3.37 | 1.80 | 3.88 | 2.47 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwaszko, J.; Kudła, K.; Lubas, M. Application of Product of Vitrification of Asbestos-Cement Waste and CRT Glass Cullet as Reinforcing Phase in Surface Composites Produced by FSP Method. Materials 2024, 17, 5508. https://doi.org/10.3390/ma17225508
Iwaszko J, Kudła K, Lubas M. Application of Product of Vitrification of Asbestos-Cement Waste and CRT Glass Cullet as Reinforcing Phase in Surface Composites Produced by FSP Method. Materials. 2024; 17(22):5508. https://doi.org/10.3390/ma17225508
Chicago/Turabian StyleIwaszko, Józef, Krzysztof Kudła, and Małgorzata Lubas. 2024. "Application of Product of Vitrification of Asbestos-Cement Waste and CRT Glass Cullet as Reinforcing Phase in Surface Composites Produced by FSP Method" Materials 17, no. 22: 5508. https://doi.org/10.3390/ma17225508
APA StyleIwaszko, J., Kudła, K., & Lubas, M. (2024). Application of Product of Vitrification of Asbestos-Cement Waste and CRT Glass Cullet as Reinforcing Phase in Surface Composites Produced by FSP Method. Materials, 17(22), 5508. https://doi.org/10.3390/ma17225508