Fabrication of CaCO3 Microcubes and Mechanistic Study for Efficient Removal of Pb from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CaCO3 Microcubes/Parallelepipeds
2.3. Characterizations
2.4. Pb(II) Uptake Experiment
2.5. Data Analysis
3. Results and Discussion
3.1. Morphological and Structural Characterizations of CaCO3
3.2. Adsorption Properties of Pb(II) on CaCO3 Microcubes/Parallelepipeds
3.2.1. Effect of pH, Adsorption Period, and Adsorbent Dosage
3.2.2. Adsorption Kinetics and Isotherm Studies of Pb(II) Removal by CaCO3
3.2.3. Mechanism of Pb(II) Removal by Calcite CaCO3 Microcubes/Parallelepipeds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, P.; Shen, T.; Li, X.; Tang, Y.; Li, Y. Magnetic Mesoporous Calcium Carbonate-Based Nanocomposites for the Removal of Toxic Pb(II) and Cd(II) Ions from Water. ACS Appl. Nano Mater. 2020, 3, 1272–1281. [Google Scholar] [CrossRef]
- Yan, Y.; Cui, Y.-B.; Wang, Q.-Y.; Che, Z.-X.; Liu, T.; Li, A.-R.; Zhou, W. Mg-doped CaCO3 nanoarchitectures assembled by () high-index facets for efficient trace removal of Pb(II). Rare Met. 2023, 42, 525–535. [Google Scholar] [CrossRef]
- Yuan, L.; Zhi, W.; Xie, Q.; Chen, X.; Liu, Y. Lead removal from solution by a porous ceramisite made from bentonite, metallic iron, and activated carbon. Environ. Sci. Water Res. Technol. 2015, 1, 814–822. [Google Scholar] [CrossRef]
- Zhao, H.-X.; Wang, Y.; Yang, J.-J.; Zhang, J.-G.; Guo, Y.-R.; Li, S.; Pan, Q.-J. Treatment of heavy metal ions-polluted water into drinkable water: Capture and recovery of Pb2+ by cellulose@CaCO3 bio-composite filter via spatial confinement effect. Chem. Eng. J. 2023, 454, 140297. [Google Scholar] [CrossRef]
- He, Y.; Jia, X.; Zhou, S.; Chen, J.; Zhang, S.; Li, X.; Huang, Y.; Wågberg, T.; Hu, G. Separatable MoS2 loaded biochar/CaCO3/Alginate gel beads for selective and efficient removal of Pb(II) from aqueous solution. Sep. Purif. Technol. 2022, 303, 122212. [Google Scholar] [CrossRef]
- Ali, S.; Naseer, S.; Rehman, M.; Wei, Z. Recent trends and sources of lead toxicity: A review of state-of-the-art nano-remediation strategies. J. Nanopart. Res. 2024, 26, 168. [Google Scholar] [CrossRef]
- Huang, H.; Guan, H.; Tian, Z.-Q.; Chen, M.-M.; Tian, K.-K.; Zhao, F.-J.; Wang, P. Exposure sources, intake pathways and accumulation of lead in human blood. Soil Secur. 2024, 15, 100150. [Google Scholar] [CrossRef]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Raj, K.; Das, A.P. Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environ. Chem. Ecotoxicol. 2023, 5, 79–85. [Google Scholar] [CrossRef]
- Chen, T.; Dai, K.; Wu, H. Effect of lead exposure on respiratory health: A systematic review and meta-analysis. Air Qual. Atmos. Health 2024. [Google Scholar] [CrossRef]
- Agoun, N.A.; Avci, F.G. Phycoremediation: A path towards heavy metal bioremediation from wastewater. J. Chem. Technol. Biotechnol. 2024. [Google Scholar] [CrossRef]
- Jin, B.; Wang, S.; Lei, Y.; Jia, H.; Niu, Q.; Dapaah, M.F.; Gao, Y.; Cheng, L. Green and effective remediation of heavy metals contaminated water using CaCO3 vaterite synthesized through biomineralization. J. Environ. Manag. 2024, 353, 120136. [Google Scholar] [CrossRef] [PubMed]
- Carolin C, F.; Kamalesh, T.; Kumar, P.S.; Rangasamy, G. A Critical Review on the Sustainable Approaches for the Removal of Toxic Heavy Metals from Water Systems. Ind. Eng. Chem. Res. 2023, 62, 8575–8601. [Google Scholar] [CrossRef]
- Wang, K.; Yi, M.; Sun, Y.; Yang, Y.; Lu, C.; Fujita, T.; Cui, X. Fabrication of electrolytic manganese residue/granulated blast furnace slag-based geopolymer microspheres (EMR/GBFS@GMs) and enhanced synergic adsorption of Cr(III)-containing wastewater. Sep. Purif. Technol. 2025, 355, 129555. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S.; Rawtani, D. Recent strategies for the removal of iron from water: A review. J. Water Process. Eng. 2017, 19, 291–304. [Google Scholar] [CrossRef]
- Elkhatib, E.A.; Moharem, M.L.; Saad, A.F.; Attia, F.A. Novel metal based nanocomposite for rapid and efficient removal of lead from contaminated wastewater sorption kinetics, thermodynamics and mechanisms. Sci. Rep. 2022, 12, 8412. [Google Scholar] [CrossRef]
- Azam, M.G.; Kabir, M.H.; Shaikh, M.A.A.; Ahmed, S.; Mahmud, M.; Yasmin, S. A rapid and efficient adsorptive removal of lead from water using graphene oxide prepared from waste dry cell battery. J. Water Process. Eng. 2022, 46, 102597. [Google Scholar] [CrossRef]
- Chowdhury, I.R.; Chowdhury, S.; Mazumder, M.A.J.; Al-Ahmed, A. Removal of lead ions (Pb2+) from water and wastewater: A review on the low-cost adsorbents. Appl. Water Sci. 2022, 12, 185. [Google Scholar] [CrossRef]
- Fiorito, E.; Porcedda, G.E.; Brundu, L.; Passiu, C.; Atzei, D.; Ennas, G.; Elsener, B.; Fantauzzi, M.; Rossi, A. Calcium carbonate as sorbent for lead removal from wastewaters. Chemosphere 2022, 296, 133897. [Google Scholar] [CrossRef]
- Devi R, V.; Nair, V.V.; Sathyamoorthy, P.; Doble, M. Mixture of CaCO3 Polymorphs Serves as Best Adsorbent of Heavy Metals in Quadruple System. J. Hazard. Toxic Radioact. Waste 2022, 26, 04021043. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, W.; Zhang, J.; Wu, C.; Ou, X.; Tian, C.; Lin, Z.; Dang, Z. Biogenic Calcium Carbonate with Hierarchical Organic–Inorganic Composite Structure Enhancing the Removal of Pb(II) from Wastewater. ACS Appl. Mater. Interfaces 2017, 9, 35785–35793. [Google Scholar] [CrossRef]
- Ma, X.; Li, L.; Yang, L.; Su, C.; Wang, K.; Yuan, S.; Zhou, J. Adsorption of heavy metal ions using hierarchical CaCO3–maltose meso/macroporous hybrid materials: Adsorption isotherms and kinetic studies. J. Hazard. Mater. 2012, 209–210, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Shen, H.; Qian, Z.; Liu, H.; Tian, D.; Wang, X. Dual-purpose applications of magnetic phase-change microcapsules with crystalline-phase-tunable CaCO3 shell for waste heat recovery and heavy metal ion removal. J. Energy Storage 2022, 55, 105672. [Google Scholar] [CrossRef]
- Islam, M.S.; Choi, W.S.; Nam, B.; Yoon, C.; Lee, H.-J. Needle-like iron oxide@CaCO3 adsorbents for ultrafast removal of anionic and cationic heavy metal ions. Chem. Eng. J. 2017, 307, 208–219. [Google Scholar] [CrossRef]
- Ma, X.; Cui, W.; Yang, L.; Yang, Y.; Chen, H.; Wang, K. Efficient biosorption of lead(II) and cadmium(II) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds. Bioresour. Technol. 2015, 185, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Fathy, M.; Zayed, M.A.; Moustafa, Y.M. Synthesis and applications of CaCO3/HPC core–shell composite subject to heavy metals adsorption processes. Heliyon 2019, 5, e02215. [Google Scholar] [CrossRef]
- Sheng, X.; Chen, S.; Zhao, Z.; Li, L.; Zou, Y.; Shi, H.; Shao, P.; Yang, L.; Wu, J.; Tan, Y.; et al. Rationally designed calcium carbonate multifunctional trap for contaminants adsorption. Sci. Total Environ. 2023, 903, 166142. [Google Scholar] [CrossRef]
- Yukhajon, P.; Somboon, T.; Seebunrueng, K.; Nishiyama, N.; Sansuk, S. Facile surface-controlled synthesis of phytic acid-facilitated calcium carbonate composites for highly efficient ferric ion adsorption and recovery from rust. Mater. Today Sustain. 2023, 24, 100520. [Google Scholar] [CrossRef]
- Ghasemi, M.; Ghasemi, N.; Zahedi, G.; Alwi, S.R.W.; Goodarzi, M.; Javadian, H. Kinetic and equilibrium study of Ni(II) sorption from aqueous solutions onto Peganum harmala-L. Int. J. Environ. Sci. Technol. 2014, 11, 1835–1844. [Google Scholar] [CrossRef]
- Cai, G.-B.; Chen, S.-F.; Liu, L.; Jiang, J.; Yao, H.-B.; Xu, A.-W.; Yu, S.-H. 1,3-Diamino-2-hydroxypropane-N, N, N′,N′-tetraacetic acid stabilized amorphous calcium carbonate: Nucleation, transformation and crystal growth. CrystEngComm 2010, 12, 234–241. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Ye, Y.; Wang, C.; Liu, D.; Shi, X.; Wang, S.; Zhu, X. In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties. J. Earth Sci. 2019, 30, 964–976. [Google Scholar] [CrossRef]
- Donnelly, F.C.; Purcell-Milton, F.; Framont, V.; Cleary, O.; Dunne, P.W.; Gun’ko, Y.K. Synthesis of CaCO3 nano- and micro-particles by dry ice carbonation. Chem. Commun. 2017, 53, 6657–6660. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Jiang, X.; Meng, Y.; Niu, Y.; Yuan, Z.; Xiao, W.; Li, X.; Ruan, X.; Yan, X.; He, G. High selective synthesis of CaCO3 superstructures via ultra-homoporous interfacial crystallizer. Chem. Eng. J. Adv. 2021, 8, 100179. [Google Scholar] [CrossRef]
- Cao, C.-Y.; Li, P.; Qu, J.; Dou, Z.-F.; Yan, W.-S.; Zhu, J.-F.; Wu, Z.-Y.; Song, W.-G. High adsorption capacity and the key role of carbonate groups for heavy metal ion removal by basic aluminum carbonate porous nanospheres. J. Mater. Chem. 2012, 22, 19898–19903. [Google Scholar] [CrossRef]
- Xing, S.; Zhao, M.; Ma, Z. Removal of heavy metal ions from aqueous solution using red loess as an adsorbent. J. Environ. Sci. 2011, 23, 1497–1502. [Google Scholar] [CrossRef]
- Qu, J.; Lin, X.; Liu, Z.; Liu, Y.; Wang, Z.; Liu, S.; Meng, Q.; Tao, Y.; Hu, Q.; Zhang, Y. One-pot synthesis of Ca-based magnetic hydrochar derived from consecutive hydrothermal and pyrolysis processing of bamboo for high-performance scavenging of Pb(II) and tetracycline from water. Bioresour. Technol. 2022, 343, 126046. [Google Scholar] [CrossRef]
- Guo, H.; Hu, S.; Wang, Z.; Li, Y.; Guo, X.; He, Z.; Wang, W.; Feng, J.; Yang, K.; Zheng, H. Synthesis of a Magnetic Carnation-like Hydroxyapatite/Basic Calcium Carbonate Nanocomposite and Its Adsorption Behaviors for Lead Ions in Water. Molecules 2022, 27, 5565. [Google Scholar] [CrossRef]
- Liu, H.; Tian, D.; Ouyang, M.; Qian, Z.; Wang, X. Morphology-controlled fabrication of magnetic phase-change microcapsules for synchronous efficient recovery of wastewater and waste heat. J. Colloid Interface Sci. 2022, 608, 1497–1513. [Google Scholar] [CrossRef]
- Ramola, S.; Belwal, T.; Li, C.J.; Wang, Y.Y.; Lu, H.H.; Yang, S.M.; Zhou, C.H. Improved lead removal from aqueous solution using novel porous bentonite—And calcite-biochar composite. Sci. Total Environ. 2020, 709, 136171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shi, D.; Li, X.; Zhang, Y.; Wang, J.; Fan, J. Nanoscale dispersing of zero-valent iron on CaCO3 and their significant synergistic effect in high performance removal of lead. Chemosphere 2019, 224, 390–397. [Google Scholar] [CrossRef]
- Dang, H.-C.; Yuan, X.; Xiao, Q.; Xiao, W.-X.; Luo, Y.-K.; Wang, X.-L.; Song, F.; Wang, Y.-Z. Facile batch synthesis of porous vaterite microspheres for high efficient and fast removal of toxic heavy metal ions. J. Environ. Chem. Eng. 2017, 5, 4505–4515. [Google Scholar] [CrossRef]
- Mallakpour, S.; Abdolmaleki, A.; Tabesh, F. Ultrasonic-assisted manufacturing of new hydrogel nanocomposite biosorbent containing calcium carbonate nanoparticles and tragacanth gum for removal of heavy metal. Ultrason. Sonochemistry 2018, 41, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Rezk, R.A.; Abdel-Salam, Z.; Abdel Ghany, N.A.; Abdelkreem, M.; Abdel-Harith, M. LIBS and pXRF validation for the removal of Pb by bio-CaCO3 nanoparticles from contaminated water. SN Appl. Sci. 2022, 4, 151. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; El-Aziz, M.E.A.; Fayez, A.E.; Kamel, A.H.; Youssef, A.M. Synthesis and characterization of bio-nanocomposite based on chitosan and CaCO3 nanoparticles for heavy metals removal. Int. J. Biol. Macromol. 2024, 255, 128007. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Diao, Q.; Zhang, X.; Lee, Y.-I.; Liu, H.-G. In situ generated Pb nanoclusters on basic lead carbonate ultrathin nanoplates as an effective heterogeneous catalyst. CrystEngComm 2017, 19, 2860–2869. [Google Scholar] [CrossRef]
- Godelitsas, A.; Astilleros, J.M.; Hallam, K.; Harissopoulos, S.; Putnis, A. Interaction of Calcium Carbonates with Lead in Aqueous Solutions. Environ. Sci. Technol. 2003, 37, 3351–3360. [Google Scholar] [CrossRef]
CaCO3-Based Adsorbent | HM | Adsorption Capacity (mg/g) | References |
---|---|---|---|
Mg-CaCO3 LSs | Pb(II) | 1961.9 | [2] |
MoS2B/CaCO3/Alg | Pb(II) | 833.3 | [5] |
Ca-MBHC | Pb(II) | 475.58 | [36] |
HAP/BCC | Pb(II) | 860 | [37] |
CaCO3/Fe3O4@ndcosane microcapsules | Pb(II) | 497.6 | [38] |
CCS700 | Pb(II) | 299.98 | [39] |
MCCR-350-550 | Pb(II) | 1179–1350 | [1] |
nZVI@CaCO3 | Pb(II) | 3828 | [40] |
V-COS | Pb(II) | 1884 | [41] |
Bio-CaCO3 | Pb(II) | 1667 | [21] |
TG/CC HNC | Pb(II) | 192 | [42] |
IO@ CaCO3 | Pb(II) | 1041.9 | [24] |
n-CaCO3 | Pb(II) | 180.5 | [43] |
Chitosan/CaCO3 | Pb(II) | 98.03 | [44] |
CaCO3 microcubes/parallelepipeds | Pb(II) | 4018 | Current study |
Pseudo-First Order | Pseudo-Second Order | ||||
---|---|---|---|---|---|
R2 | K1 (min−1) | qe (mg/g) | R2 | K2 (min−1) | qe (mg/g) |
0.7991 | 0.0295 | 1992.508 | 0.9866 | 1.86 × 10−5 | 1130 |
Langmuir Constants | Freundlich Constants | Temkin Constants | ||||||
---|---|---|---|---|---|---|---|---|
R2 | KL (L/mg) | qm (mg/g) | R2 | n | KF (mg/g) | R2 | bT (J/mol) | AT (L/g) |
0.85541 | 14.7339 | 2521.76 | 0.97582 | 2.3192 | 1989.78 | 0.9965 | 2.5853 | 10.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naseer, U.; Mushtaq, A.; Ali, M.; Ali, M.; Ahmad, A.; Yousaf, M.; Yue, T. Fabrication of CaCO3 Microcubes and Mechanistic Study for Efficient Removal of Pb from Aqueous Solution. Materials 2024, 17, 5523. https://doi.org/10.3390/ma17225523
Naseer U, Mushtaq A, Ali M, Ali M, Ahmad A, Yousaf M, Yue T. Fabrication of CaCO3 Microcubes and Mechanistic Study for Efficient Removal of Pb from Aqueous Solution. Materials. 2024; 17(22):5523. https://doi.org/10.3390/ma17225523
Chicago/Turabian StyleNaseer, Ufra, Asim Mushtaq, Muhammad Ali, Moazzam Ali, Atif Ahmad, Muhammad Yousaf, and Tianxiang Yue. 2024. "Fabrication of CaCO3 Microcubes and Mechanistic Study for Efficient Removal of Pb from Aqueous Solution" Materials 17, no. 22: 5523. https://doi.org/10.3390/ma17225523
APA StyleNaseer, U., Mushtaq, A., Ali, M., Ali, M., Ahmad, A., Yousaf, M., & Yue, T. (2024). Fabrication of CaCO3 Microcubes and Mechanistic Study for Efficient Removal of Pb from Aqueous Solution. Materials, 17(22), 5523. https://doi.org/10.3390/ma17225523