Using SiO2-Supported MnO2@Fe2O3 Composite to Catalytically Decompose Waste Drilling Fluids Through Fenton-like Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of Composite Catalyst
2.3. Degradation Performance Measurements
2.4. Characterization Methods
3. Results and Discussion
3.1. Catalyst Characterization
3.2. Catalytic Degradation Mechanism
3.3. Catalytic Degradation of Waste Drilling Fluids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pereira, L.B.; Sad, C.M.S.; Castro, E.V.R.; Filgueiras, P.R.; Lacerda, V. Environmental impacts related to drilling fluid waste and treatment methods: A critical review. Fuel 2022, 310, 122301. [Google Scholar] [CrossRef]
- Luo, T.; Li, J.; Xu, J.; Wang, J.; Zhang, L.; Yu, Z. The Effects of Organically Modified Lithium Magnesium Silicate on the Rheological Properties of Water-Based Drilling Fluids. Materials 2024, 17, 1564. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, A.; Shadizadeh, S.R. State-of-the-art drilling fluid made of produced formation water for prevention of clay swelling: Experimental Investigation. Chem. Eng. Res. Des. 2021, 170, 350–365. [Google Scholar] [CrossRef]
- Msadok, I.; Hamdi, N.; Rodríguez, M.A.; Ferrari, B.; Srasra, E. Synthesis and characterization of Tunisian organoclay: Application as viscosifier in oil drilling fluid. Chem. Eng. Res. Des. 2020, 153, 427–434. [Google Scholar] [CrossRef]
- Elnenay, A.M.H.; Nassef, E.; Malash, G.F.; Magid, M.H.A. Treatment of drilling fluids wastewater by electrocoagulation. Egypt. J. Pet. 2017, 26, 203–208. [Google Scholar] [CrossRef]
- Drzewicz, P.; Nałecz-Jawecki, G.; Drobniewska, A.; Zgadzaj, A.; Smoliński, A.; Krzan, M.; Starzycka, A. Toxicological Evaluation of Thermal Treatment of Drilling Waste from Shale Gas Exploration in Poland. Ecol. Chem. Eng. S 2019, 26, 45–57. [Google Scholar] [CrossRef]
- Siddig, O.; Mahmoud, A.A.; Elkatatny, S. A review of the various treatments of oil-based drilling fluids filter cakes. J. Pet. Explor. Prod. Technol. 2022, 12, 365–381. [Google Scholar] [CrossRef]
- Zhu, M.J.; Liu, H.J.; Yao, J.; Luo, Q.H. Chemical demulsification-ultrasonic recycle oil from oil-based drilling fluid using response surface methodology. Adv. Mater. Res. 2014, 955–959, 2653–2657. [Google Scholar] [CrossRef]
- Street, C.G.; Tesche, C.; Guigard, S.E.; Guigard, C. Treatment of Hydrocarbon-based drilling waste using supercritical carbon dioxide. SPE Drill. Complet. 2009, 24, 413–417. [Google Scholar] [CrossRef]
- Yang, J.; Sun, J.; Wang, R.; Qu, Y. Treatment of drilling fluid waste during oil and gas drilling: A review. Environ. Sci. Pollut. Res. 2023, 30, 19662–19682. [Google Scholar] [CrossRef]
- Li, Z.Y.; Xie, S.; Jiang, G.; Bao, M.; Wang, Z.; Huang, X.; Xu, F. Bioremediation of offshore oily drilling fluids. Energy Sources 2015, 37, 1680–1687. [Google Scholar] [CrossRef]
- Chen, F.; Zhao, X.; Liu, H.; Qu, J. Reaction of Cu(CN)32− with H2O2 in water under alkaline conditions: Cyanide oxidation, Cu+/Cu2+ catalysis and H2O2 decomposition. Appl. Catal. B Environ. 2014, 158–159, 85–90. [Google Scholar] [CrossRef]
- Wang, W.M.; Song, J.; Han, X. Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2. J. Hazard. Mater. 2013, 262, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Gahrouei, A.E.; Vakili, S.; Zandifar, A.; Pourebrahimi, S. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). Environ. Res. 2024, 252, 119029. [Google Scholar] [CrossRef]
- Moradi, A.; Kazemeini, M.; Hosseinpour, V.; Pourebrahimi, S. Efficient degradation of naproxen in wastewater using Ag-deposited ZnO nanoparticles anchored on a house-of-cards-like MFI-type zeolite: Preparation and physicochemical evaluations of the photocatalyst. J. Water Process Eng. 2024, 60, 105155. [Google Scholar] [CrossRef]
- Xing, M.; Xu, W.; Dong, C.; Bai, Y.; Zeng, J.; Zhou, Y.; Zhang, J.; Yin, Y. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 2018, 4, 1359–1372. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; Yao, Q.; Wang, Y.; Fang, X.; Shen, C.; Li, F.; Huang, M.; Wang, Z.; Sand, W.; et al. Supported atomically-precise gold nanoclusters for enhanced flow-through electro-fenton. Environ. Sci. Technol. 2020, 54, 5913–5921. [Google Scholar] [CrossRef]
- Fu, Y.; Yin, Z.; Qin, L.; Huang, D.; Yi, H.; Liu, X.; Liu, S.; Zhang, M.; Li, B.; Li, L.; et al. Recent progress of noble metals with tailored features in catalytic oxidation for organic pollutants degradation. J. Hazard. Mater. 2022, 422, 126950. [Google Scholar] [CrossRef]
- Ghosh, S.K. Diversity in the family of manganese oxides at the nanoscale: From fundamentals to applications. ACS Omega 2020, 5, 25493–25504. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, R.; Li, X.; Wei, Y.; Feng, L. A bifunctional β-MnO2 mesh for expeditious and ambient degradation of dyes in activation of peroxymonosulfate (PMS) and simultaneous oil removal from water. J. Colloid. Interface Sci. 2020, 579, 412–424. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Gao, M.; Xin, Y.; Zhang, G.; Xu, P.; Ma, D. Degradation of dimethyl phthalate by morphology controlled β-MnO2 activated peroxymonosulfate: The overlooked roles of high-valent manganese species. J. Hazard. Mater. 2023, 459, 132199. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ma, Q.; Lin, H.; Zhou, J.; Yuan, S.; Ma, B.; Bai, Y.; Qu, J. Enhancement of micropollutant biotransformation by adding manganese sand in constructed wetlands. Heliyon 2023, 9, e15092. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, H.; Huang, Z.; Xu, H.; Shen, W. O-vacancy-rich porous MnO2 nanosheets as highly efficient catalysts for propane catalytic oxidation. Appl. Catal. B Environ. 2022, 312, 121387. [Google Scholar] [CrossRef]
- Yu, P.; Song, Y.; Jin, X.; Fu, J.; Zhang, S. Study on the efficiency of manganese oxide-bearing manganese sand for removing Mn2+ from aqueous solution. Microporous Mesoporous Mater. 2024, 364, 112859. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Z.; Li, N.; Nan, J.; Yu, R.; Du, J. Visible-light-driven photocatalytic degradation of ciprofloxacin by a ternary Mn2O3/Mn3O4/MnO2 valence state heterojunction. Chem. Eng. J. 2018, 353, 805–813. [Google Scholar] [CrossRef]
- Wang, H.; Chen, H.; Wang, Y.; Lyu, Y.K. Performance and mechanism comparison of manganese oxides at different valence states for catalytic oxidation of NO. Chem. Eng. J. 2019, 361, 1161–1172. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, A.; Wan, X.; Yu, M.; Sun, D.; Li, Z.; Shi, G.; Feng, Y.; Yan, J.; Zhao, C.; et al. Zero-energy consuming fast decomposition of H2O2 over mullite oxide YMn2O5. Chem. Eng. J. 2023, 474, 145649. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Cai, G.; Wang, Y.; Gao, Z.; Hao, R.; Bao, X.; Zhao, C.; Wang, W. Spatial geometric effect driven by the different [MnO6] octahedra entity stacking configurations to facilitate the catalytic decomposition of H2O2 in wastewater. Appl. Surf. Sci. 2024, 669, 160589. [Google Scholar] [CrossRef]
- Young, M.J.; Holder, A.M.; George, S.M.; Musgrave, C.B. Charge storage in cation incorporated α-MnO2. Chem. Mater. 2015, 27, 1172–1180. [Google Scholar] [CrossRef]
- Liu, B.; Gao, L.; Zhou, F.; Duan, G. Preferentially epitaxial growth of β-FeOOH nanoflakes on SnO2 hollow spheres allows the synthesis of SnO2/α-Fe2O3 hetero-nanocomposites with enhanced gas sensing performance for dimethyl disulfide. Sens. Actuators B. Chem. 2018, 272, 348–360. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Li, Y.; Chang, X.; Zhang, J.; Chen, G. Study of COD Removal from the Waste Drilling Fluid and Its Application Chad Oilfield. J. Water Chem. Technol. 2021, 43, 60–67. [Google Scholar] [CrossRef]
- Peng, H.; Zou, C.; Wang, C.; Tang, W.; Zhou, J. The effective removal of phenol from aqueous solution via adsorption on CS/β-CD/CTA multicomponent adsorbent and its application for COD degradation of drilling wastewater. Environ. Sci. Pollut Res. 2020, 27, 33668–33680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, D.; Liu, Y.; Liu, H.; Huang, M.; Chen, L.; Chen, Q. Screening and characterization of high performance synthetic-based drilling fluids degrading bacteria. IOP Conf. Ser. Earth Environ. Sci. 2020, 467, 012143. [Google Scholar] [CrossRef]
Sample | ∮600 | ∮300 | AV (mPa·s) | PV (mPa·s) | YP (Pa) | Light Transmittance (%) | COD (mg L−1) |
---|---|---|---|---|---|---|---|
1# | 11.49 | 17.51 | 8.73 | 6.03 | 2.63 | 18.17 | 9480 |
2# | 3.01 | 5.03 | 2.52 | 2.01 | 0.48 | 23.16 | 9030 |
3# | 2.42 | 4.41 | 2.22 | 2.03 | 0.19 | 44.23 | 5567 |
4# | 2.23 | 4.33 | 2.14 | 2.12 | 0.10 | 61.04 | 5340 |
5# | 2.04 | 3.90 | 1.93 | 1.91 | 0.05 | 80.22 | 5145 |
6# | 1.93 | 3.72 | 1.82 | 1.84 | 0.05 | 91.23 | 4967 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, T.; Yan, J.; Li, B.; Yan, H.; Guo, L.; Sun, Q.; Guan, Z.; Zhao, C.; Zhang, S.; Wang, W. Using SiO2-Supported MnO2@Fe2O3 Composite to Catalytically Decompose Waste Drilling Fluids Through Fenton-like Oxidation. Materials 2024, 17, 5540. https://doi.org/10.3390/ma17225540
Geng T, Yan J, Li B, Yan H, Guo L, Sun Q, Guan Z, Zhao C, Zhang S, Wang W. Using SiO2-Supported MnO2@Fe2O3 Composite to Catalytically Decompose Waste Drilling Fluids Through Fenton-like Oxidation. Materials. 2024; 17(22):5540. https://doi.org/10.3390/ma17225540
Chicago/Turabian StyleGeng, Tie, Jiaguo Yan, Bin Li, Haiyuan Yan, Lei Guo, Qiang Sun, Zengfu Guan, Chunning Zhao, Shen Zhang, and Weichao Wang. 2024. "Using SiO2-Supported MnO2@Fe2O3 Composite to Catalytically Decompose Waste Drilling Fluids Through Fenton-like Oxidation" Materials 17, no. 22: 5540. https://doi.org/10.3390/ma17225540
APA StyleGeng, T., Yan, J., Li, B., Yan, H., Guo, L., Sun, Q., Guan, Z., Zhao, C., Zhang, S., & Wang, W. (2024). Using SiO2-Supported MnO2@Fe2O3 Composite to Catalytically Decompose Waste Drilling Fluids Through Fenton-like Oxidation. Materials, 17(22), 5540. https://doi.org/10.3390/ma17225540