The Adsorption of Arsenate and Arsenite Ions on Oxidic Substrates Prepared with a Variable-Charge Lithological Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standard Solutions
2.2. Preparation of the Adsorbent Substrate
2.3. Activation of the Substrate
2.4. Adsorption Studies
3. Results and Discussion
3.1. Specific Surfaces and Macroporosity
3.2. As(V) Adsorption
3.2.1. Adsorption Isotherms
3.2.2. pH and Electrical Conductivity Variations
3.2.3. Kinetic Measurements
3.3. Adsorption of As(III)
3.3.1. Adsorption Isotherms
3.3.2. pH and Electrical Conductivity Variations
3.3.3. Kinetic Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohan, D.; Pittman, C.U. Arsenic Removal from Water/Wastewater Using Adsorbents. A Critical Review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Herath, I.; Vithanage, M.; Bundschuh, J.; Prakash Maity, J.; Bhattacharya, P. Natural Arsenic in Global Groundwaters: Distribution and Geochemical Triggers for Mobilization. Curr. Pollut. Rep. 2016, 2, 68–89. [Google Scholar] [CrossRef]
- Singh, S.; Naik, T.S.S.K.; U, B.; Khan, N.A.; Wani, A.B.; Behera, S.K.; Nath, B.; Bhati, S.; Singh, J.; Ramamurthy, P.C. A Systematic Study of Arsenic Adsorption and Removal from Aqueous Environments Using Novel Graphene Oxide Functionalized UiO-66-NDC Nanocomposites. Sci. Rep. 2022, 12, 15802. [Google Scholar] [CrossRef]
- Anawar, H.M.; Akai, J.; Sakugawa, H. Mobilization of Arsenic from Subsurface sediments by Effect of Bicarbonate Ions in Groundwater. Chemosphere 2004, 54, 753–762. [Google Scholar] [CrossRef]
- Cortés-Arriagada, D.; Ortega, D.E. Removal of Arsenic from Water using Iron-doped Phosphorene Nanoadsorbents: A Theoretical DFT Study with Solvent Effects. J. Mol. Liq. 2020, 307, 112958. [Google Scholar] [CrossRef]
- Punshon, T.; Jackson, B.P.; Meharg, A.A.; Warczack, T.; Scheckel, K.; Guerinot, M.L. Understanding Arsenic Dynamics in Agronomic Systems to Predict and Prevent Uptake by Crop Plants. Sci Total Environ. 2017, 581–582, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Welch, A.H.; Westjohn, D.B.; Helsel, D.R.; Wanty, R. Arsenic in Around Water of the United States: Occurrence and Geochemistry. Ground Water 2000, 38, 589–604. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinninburgh, D.G. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Casto de Espinoza, M.L. Arsénico en el agua de Bebida de América Latina y su Efecto en la Salud Pública. In Hoja de Divulgación Técnica, HDT-CEPIS Nº 95; Centro Panamericano de Ingeniería Sanitaria y Ciencias Ambientales, CEPIS/OPS: Lima, Perú, 2004; pp. 1–12. [Google Scholar]
- Revelli, G.R.; Sbodio, O.A.; Costa, G. Estudio Epidemiológico de Arsénico en Agua Subterránea para Consumo Humano en el Territorio del Clúster Lechero Regional, Argentina. Acta toxicol. Argent. 2016, 24, 105–115. [Google Scholar]
- Yao, R.; Yang, H. An Overview of As(V) Removal from Water by Adsorption Technology. Ann. Musculoskelet. Med. 2020, 4, 15–20. [Google Scholar] [CrossRef]
- Samimi, M.; Zakeri, M.; Alobaid, F.; Aghel, B.A. Brief Review of Recent Results in Arsenic Adsorption Process from Aquatic Environments by Metal-Organic Frameworks: Classification Based on Kinetics, Isotherms and Thermodynamics Behaviors. Nanomaterials 2022, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- John, Y.; David, V.E.; Mmereki, D.A. Comparative Study on Removal of Hazardous Anions from Water by Adsorption: A Review. Int. J. Chem. Eng. 2018, 2018, 3975948. [Google Scholar] [CrossRef]
- Mojiri, A.; Razmi, E.; KarimiDermani, B.; Rezania, S.; Kasmuri, N.; Vakili, M.; Farraji, H. Adsorption Methods for Arsenic Removal in Water Bodies: A Critical Evaluation of Effectiveness and Limitations. Front. Water 2024, 6, 1301648. [Google Scholar] [CrossRef]
- Joshi, S.; Sharma, M.; Kumari, A.; Shrestha, S.; Shrestha, B. Arsenic Removal from Water by Adsorption onto Iron Oxide/Nano-Porous Carbon Magnetic Composite. Appl. Sci. 2019, 9, 3732. [Google Scholar] [CrossRef]
- Kuldeyev, E.; Seitzhanova, M.; Tanirbergenova, S.; Tazhu, K.; Doszhanov, E.; Mansurov, Z.; Azat, S.; Nurlybaev, R.; Berndtsson, R. Modifying Natural Zeolites to Improve Heavy Metal Adsorption. Water 2023, 15, 2215. [Google Scholar] [CrossRef]
- Velarde, L.; Nikjoo, D.; Escalera, D.; Akhtar, F. Bolivian natural zeolite as a low-cost adsorbent for the adsorption of cadmium: Isotherms and kinetics. Heliyon 2024, 10, e24006. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. A Review of the Use of Red Mud as Adsorbent for Removal of Toxic Pollutants from Water and Wastewater. Environ. Technol. 2011, 32, 231–249. [Google Scholar] [CrossRef]
- Prato, J.G.; Millán, F.; Senila, M.; Levei, E.A.; Tănăselia, C.; González, L.C.; Ríos, A.C.; Sagñay Yasaca, L.; Dávalos, G.E. Chemical and Physical Characterization of Three Oxidic Lithological Materials for Water Treatment. Sustainability 2024, 16, 7902. [Google Scholar] [CrossRef]
- Sadeghalvad, B.; Khorshidi, N.; Azadmehr, A.; Sillanpää, M. Sorption, Mechanism, and Behavior of Sulfate on Various Ad-sorbents: A Critical Review. Chemosphere 2021, 263, 12806. [Google Scholar] [CrossRef]
- Millán, F.; Prato, J.G.; González, L.C.; Márquez, A.; Djabayan, P. Cu (II) Chemisorption on Calcined Substrates made with an Oxidic Refractory Variable Charges Lithological Material. Rev. Tec. Ing. Univ. Zulia 2019, 32, 10–18. [Google Scholar] [CrossRef]
- Qafoku, N.P.; Van Ranst, E.; Noble, A.; Baert, G. Variable Charge Coils: Their Mineralogy, Chemistry and Management. Adv. Agron. 2004, 84, 159–214. [Google Scholar] [CrossRef]
- Xu, R.K.; Qafoku, N.P.; Van Ranst, E.; Li, J.Y.; Jiang, J. Adsorption Properties of Subtropical and Tropical Variable Soils: Implication from Climate Change and Biochard Amendment. Adv. Agron. 2016, 135, 1–58. [Google Scholar] [CrossRef]
- Márquez, A.; Millán, F.; Prato, J.G.; La Cruz, C. Adsorción de Iones Cr(VI) sobre Lechos Adsorbentes Calcinados con Superficie de Carga Variable Químicamente Modificada. Rev. Tec. Ing. Univ. Zulia 2020, 43, 72–81. [Google Scholar] [CrossRef]
- Millán, F.; Prato, J.G.; García, O.; Díaz, I.; Sánchez, M. Adsorción de Iones Cu2+ y Zn2+ por Materiales Litológicos de Carga Variable Provenientes de Suelos del Estado Mérida, Venezuela. Rev. Tec. Ing. Univ. Zulia 2013, 36, 195–201. [Google Scholar]
- Prato, J.G.; Millán, F.C.; González, L.C.; Ríos, A.C.; López, E.; Ríos, I.; Navas, S.; Márquez, A.; Carrero, J.C.; Díaz, J.I. Adsorption of Phosphate and Nitrate Ions on Oxidic Substrates Prepared with a Variable-Charge Lithological Material. Water 2022, 14, 2454. [Google Scholar] [CrossRef]
- McBride, M.B. Environmental Chemistry of Soils; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Gu, S.; Kang, X.; Wang, L.; Lichtfouse, E.; Wang, C. Clay Mineral Adsorbents for Heavy Metal Removal from Wastewater: A Review. Environ. Chem. Lett. 2019, 17, 629–654. [Google Scholar] [CrossRef]
- Prato, J.G.; Millán, F.; Rangel, M.; Márquez, A.; González, L.C.; Ríos, I.; García, C.; Rondón, C.; Wang, E. Adsorption of Pb (II) Ions on Variable Charge Oxidic Calcined Substrates with Chemically Modified Surface. F1000Research 2024, 12, 747. [Google Scholar] [CrossRef]
- Arrai, Y.; Elzinga, E.J.; Sparks, D.L. Xray Absorption Spectroscopic Investigation of Arsenite and Arsenaye Adsorption at the Aluminum Oxide-water Interface. J. Colloid Interface Sci. 2001, 235, 80–88. [Google Scholar] [CrossRef]
- Dzade, N.Y.; Leeuw, N.H. Density Functional Theory Characterization of the Structures of H3AsO3 and H3AsO4 Adsorption Complexes on Ferrihydrite. Environ. Sci. Process. Impacts. 2018, 20, 977–987. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Y.; Tiwari, D.; Wang, H. Effect of Ionic Strength on Adsorption of As(III) and As(V) on Variable Charge Soils. J. Environ. Sci. 2009, 21, 927–932. [Google Scholar] [CrossRef]
- Foth, H.D. Fundamentals of Soil Science, 8th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1990. [Google Scholar]
- Miller, J.C.; Miller, J.N. Basic Statistical Methods for Analytical Chemistry. Part 2. Calibration and Regression Methods. A Review. Analyst 1991, 116, 3–14. [Google Scholar] [CrossRef]
- Ji, B.; Zhang, W. Rare Earth Elements (REEs) Recovery and Porous Silica Preparation from Kaolinite. Powder Technol. 2021, 391, 522–531. [Google Scholar] [CrossRef]
- Yan, F.; Tuller, M.; de Jonge, L.W.; Moldrup, P.; Arthur, E. Specific Surface Area of Soils with Different Clay Mineralogy can be Estimated from a Single Hygroscopic Water Content. Geoderma 2023, 438, 116614. [Google Scholar] [CrossRef]
- Lombardi, B.; Dapino, M.A.; Montardit, P.R.; Torrez Sánchez, R.M. Aproximación del Valor de la Superficie Específica por un Método Normaly Simple; Asociación Argentina de Materiales (SAM): Buenos Aires, Argentina, 2001; pp. 251–256. [Google Scholar]
- Adamson, A. Physical Chemistry of Surfaces, 5th ed.; Wiley Interscience Publications: Hoboken, NJ, USA, 1990; pp. 421–426. [Google Scholar]
- Nakamoto, K.; Kobayashi, T. Arsenate and Arsenite Adsorbents Composed of Nano-sized Cerium Oxide Deposited on Activated Alumina. Sep. Sci. Technol. 2018, 54, 523–534. [Google Scholar] [CrossRef]
- Hamid, N.H.; Rushdan, A.I.; Nordin, A.H.; Norrrahim, M.N.; Muhamad, S.N.; Tahir, M.I.; Rosli, N.S.; Pakrudin, N.H.; Roslee, A.S.; Asyraf, M.R.; et al. A review: The State-of-the-art of Arsenic Removal in Wastewater. Water Reuse 2024, 14, 279–311. [Google Scholar] [CrossRef]
- Sattar, M.S.; Shakoor, M.B.; Ali, S.; Rizwan, M.; Niazi, N.K.; Jilani, A. Comparative Efficiency of Peanut Shell and Peanut Shell Biochar for Removal of Arsenic from Water. Environ. Sci. Pollut. Res. 2019, 26, 18624–18635. [Google Scholar] [CrossRef]
- de Magalhães, L.F.; da Silva, G.R.; Peres, A.E.C.; Kooh, M.R.R. Zeolite Application in Wastewater Treatment. Adsorp. Sci. Technol. 2022, 2022, 4544104. [Google Scholar] [CrossRef]
- Yanga, J.S.; Kwona, M.J.; Parka, Y.T.; Choi, J. Adsorption of Arsenic from Aqueous Solutions by Iron Oxide Coated Sand Fabricated with Acid Mine Drainage. Sep. Sci. Technol. 2015, 50, 267–275. [Google Scholar] [CrossRef]
- Inchaurrondo, N.; di Luca, C.; Mori, F.; Pintar, A.; Žerjav, G.; Valiente, M.; Palet, C. Synthesis and adsorption behavior of mesoporous alumina and Fe-doped alumina for the removal of dominant arsenic species in contaminated waters. J. Environ. Chem. Eng. 2019, 7, 102901. [Google Scholar] [CrossRef]
- Hao, L.; Liu, L.; Wang, N.; Li, G. A Critical Review on Arsenic Removal from Water using Iron-based Adsorbents. RSC Adv. 2018, 8, 39545–39560. [Google Scholar] [CrossRef]
- Su, H.; Ye, Z.; Hmidi, N. High-performance iron oxide graphene oxide nanocomposite adsorbents for arsenic removal. Colloids Surf. Physicochem. Eng. Asp. 2017, 522, 161–172. [Google Scholar] [CrossRef]
- Velarde, L.; Nabavi, M.S.; Escalera, E.; Antti, M.L.; Akhtar, F. Adsorption of heavy metals on natural zeolites: A review. Chemosphere 2023, 328, 138508. [Google Scholar] [CrossRef] [PubMed]
α (nm) | Equation | R2 |
---|---|---|
189.042 | EI = −0.2555 + 0.1295 × CAS | 0.9998 * |
193.754 | EI = −0.3425 + 0.1250 × CAS | 0.9998 * |
Specific Surface (m2/g) | 33.82 |
---|---|
Pore volume (μL/g) | 140.06 |
Pore width (Å) | 165.65 |
Pore size (Å) | 74.60 |
Macroporosity (%) | 29.39 |
Substrate | Fitted Equation | R2 | K | n |
---|---|---|---|---|
Activated | Log(x/m) = 1.0246 + 0.7253 × Log(Ceq) | 0.9962 * | 10.58 | 1.38 |
Non-activated | Log(x/m) = 0.7364 + 0.7019 × Log(Ceq) | 0.9982 * | 5.45 | 1.42 |
Substrate | Fitted Equation | R2 | k (L/mg · min) |
---|---|---|---|
Activated | 1/C = 0.0255 + 3.78 × 10−5 × t | 0.8860 * | 3.78 × 10−5 |
Non-activated | 1/C = 0.0243 + 2.16 × 10−5 × t | 0.8565 * | 2.16 × 10−5 |
Substrate | Fitted Equation | R2 | K | n |
---|---|---|---|---|
Activated | Log(x/m) = 0.7362 + 0.7085 × Log(Ceq) | 0.9978 * | 5.45 | 1.41 |
Non-activated | Log(x/m) = 0.3875 + 0.7865 × Log(Ceq) | 0.9992 * | 2.44 | 1.27 |
Substrate | Fitted Equation | R2 | k (min−1) |
---|---|---|---|
Activated | logCeq = 1.5961 − 4.002 × 10−4 × t | 0.9882 * | 9.22 × 10−4 |
Non-activated | logCeq = 1.6191 − 1.997 × 10−4 × t | 0.9602 * | 4.60 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Wang, E.; Millán, F.; Prato, J.G.; Senilă, M.; Márquez Chacón, A.E.; González, L.C.; Santillán Lima, G.P.; Silva Padilla, C. The Adsorption of Arsenate and Arsenite Ions on Oxidic Substrates Prepared with a Variable-Charge Lithological Material. Materials 2024, 17, 5544. https://doi.org/10.3390/ma17225544
Ren X, Wang E, Millán F, Prato JG, Senilă M, Márquez Chacón AE, González LC, Santillán Lima GP, Silva Padilla C. The Adsorption of Arsenate and Arsenite Ions on Oxidic Substrates Prepared with a Variable-Charge Lithological Material. Materials. 2024; 17(22):5544. https://doi.org/10.3390/ma17225544
Chicago/Turabian StyleRen, Xinyao, Enju Wang, Fernando Millán, José G. Prato, Marin Senilă, Andrés Eduardo Márquez Chacón, Luisa Carolina González, Guido P. Santillán Lima, and Carla Silva Padilla. 2024. "The Adsorption of Arsenate and Arsenite Ions on Oxidic Substrates Prepared with a Variable-Charge Lithological Material" Materials 17, no. 22: 5544. https://doi.org/10.3390/ma17225544
APA StyleRen, X., Wang, E., Millán, F., Prato, J. G., Senilă, M., Márquez Chacón, A. E., González, L. C., Santillán Lima, G. P., & Silva Padilla, C. (2024). The Adsorption of Arsenate and Arsenite Ions on Oxidic Substrates Prepared with a Variable-Charge Lithological Material. Materials, 17(22), 5544. https://doi.org/10.3390/ma17225544