Hybrid High-Power AlGaN/CdZnO/GaN/AlGaN HEMT with High Breakdown Voltage
Abstract
:1. Introduction
2. Methods
- 1 μm thick Al0.05Ga0.95N back–barrier layer
- 10 nm thick GaN layer
- 10 nm thick In0.1Ga0.9N layer (or Cd0.1Zn0.9O layer for the hybrid structure)
- 10 nm thick AlxGa1−xN barrier layer (x varied from 0.1 to 0.3)
- 500 nm Silicon nitride (SiN) passivation layer
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harrouche, K.; Kabouche, R.; Okada, E.; Medjdoub, F. High Performance and Highly Robust AlN/GaN HEMTs for Millimeter-Wave Operation. IEEE J. Electron Devices Soc. 2019, 7, 1145–1150. [Google Scholar] [CrossRef]
- Moon, J.S.; Grabar, B.; Wong, J.; Dao, C.; Arkun, E.; Tai, H.; Fanning, D.; Miller, N.C.; Elliott, M.; Gilbert, R.; et al. W-Band Graded-Channel GaN HEMTs With Record 45 % Power-Added-Efficiency at 94 GHz. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 161–164. [Google Scholar] [CrossRef]
- Akso, E.; Collins, H.; Clymore, C.; Li, W.; Guidry, M.; Romanczyk, B.; Wurm, C.; Liu, W.; Hatui, N.; Hamwey, R.; et al. First Demonstration of Four-Finger N-polar GaN HEMT Exhibiting Record 712-mW Output Power With 31.7 % PAE at 94 GHz. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 683–686. [Google Scholar] [CrossRef]
- Moon, J.-S.; Wong, J.; Grabar, B.; Antcliffe, M.; Chen, P.; Arkun, E.; Khalaf, I.; Corrion, A.; Chappell, J.; Venkatesan, N.; et al. 360 GHz fMAX Graded-Channel AlGaN/GaN HEMTs for mmWave Low-Noise Applications. IEEE Electron Device Lett. 2020, 41, 1173–1176. [Google Scholar] [CrossRef]
- Zhou, Y.; Mi, M.; Gong, C.; Wang, P.; Wen, X.; Chen, Y.; Liu, J.; Yang, M.; Zhang, M.; Zhu, Q.; et al. High-Efficiency Millimeter-Wave Enhancement-Mode Ultrathin-Barrier AlGaN/GaN Fin-HEMT for Low-Voltage Terminal Applications. IEEE Trans. Electron Devices 2023, 1–4. [Google Scholar] [CrossRef]
- Mishra, U.K.; Parikh, P.; Wu, Y.F. AlGaN/GaN HEMTs—An Overview of Device Operation and Applications. Proc. IEEE 2002, 90, 1022–1031. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F.; Zhang, A.P.; Lee, K.P. Fabrication and Performance of GaN Electronic Devices. J. Appl. Phys. 2001, 89, 1–26. [Google Scholar] [CrossRef]
- Ambacher, O.; Smart, J.; Shealy, J.R.; Weimann, G.; Chu, K.; Murphy, M.; Schaff, W.J.; Eastman, L.F.; Dimitrov, R.; Wittmer, L.; et al. Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures. J. Appl. Phys. 1999, 85, 3222–3233. [Google Scholar] [CrossRef]
- Karmalkar, S.; Mishra, U.K. Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using a Field Plate. IEEE Trans. Electron Devices 2001, 48, 1515–1521. [Google Scholar]
- Saito, W.; Takada, Y.; Kuraguchi, M.; Tsuda, K.; Omura, I. Recessed-Gate Structure Approach toward Normally off High-Voltage AlGaN/GaN HEMT for Power Electronics Applications. IEEE Trans. Electron Devices 2003, 50, 2528–2531. [Google Scholar] [CrossRef]
- Shanbhag, A.; Grandpierron, F.; Harrouche, K.; Medjdoub, F. Physical Insights of Thin AlGaN Back Barrier for Millimeter-Wave High Voltage AlN/GaN on SiC HEMTs. Appl. Phys. Lett. 2023, 123, 142102. [Google Scholar] [CrossRef]
- Mounika, B.; Ajayan, J.; Bhattacharya, S.; Nirmal, D.; Sreenivasulu, V.B.; Kumari, N.A. Investigation on Effect of AlN Barrier Thickness and Lateral Scalability of Fe-Doped Recessed T-Gate AlN/GaN/SiC HEMT with Polarization-Graded Back Barrier for Future RF Electronic Applications. Microelectron. J. 2023, 140, 105923. [Google Scholar] [CrossRef]
- Said, N.; Harrouche, K.; Medjdoub, F.; Labat, N.; Tartarin, J.G.; Malbert, N. Role of AlGaN Back-Barrier in Enhancing the Robustness of Ultra-Thin AlN/GaN HEMT for mmWave Applications. Microelectron. Reliab. 2023, 150, 115110. [Google Scholar] [CrossRef]
- Garg, T.; Kale, S. A Novel p-GaN HEMT with AlInN/AlN/GaN Double Heterostructure and InAlGaN Back-Barrier. Microelectron. Reliab. 2023, 145, 114998. [Google Scholar] [CrossRef]
- Binola, I.V.K.J.; Franklin, S.A.; Gifta, G.; Prajoon, P.; Nirmal, D. Revolutionizing Fe-Doped Back Barrier AlGaN/GaN HEMTs: Unveiling the Remarkable 1700V Breakdown Voltage Milestone. Microelectron. J. 2024, 147, 106158. [Google Scholar]
- Arulkumaran, S.; Vicknesh, S.; Ng, G.I.; Liu, Z.H.; Selvaraj, S.L.; Egawa, T. High Vertical Breakdown Strength with Low Specific On-Resistance in AlGaN/AlN/GaN HEMTs on Silicon. Phys. Status Solidi RRL 2011, 5, 37–39. [Google Scholar] [CrossRef]
- Chakraborty, S.; Pal, R.R.; Dutta, S. A Theoretical Approach to Study the Thermal Impact of the DC and RF Characteristics of a MgZnO/ZnO HEMT. J. Korean Phys. Soc. 2024, 84, 313–322. [Google Scholar] [CrossRef]
- Kiran, G.; Pandey, S.K.; Dwivedi, P.; Singh, R. Device Optimization and Sensitivity Analysis of a Double-Cavity Graded MgZnO/ZnO MOSHEMT for Biomolecule Detection. Phys. Scr. 2024, 99, 055015. [Google Scholar]
- Chaudhary, S.; Kumar, P.; Mahapatra, B.; Patel, C.; Dubey, M.; Mukherjee, S. Microwave Performance Analysis of MgZnO/CdZnO HEMT. In Proceedings of the 2023 IEEE 23rd International Conference on Nanotechnology (NANO), Jeju City, Republic of Korea, 2–5 July 2023; pp. 471–475. [Google Scholar]
- Verma, Y.K.; Dheep, R.; Adhikari, M.S. Analysis of Electrical Performance of MgZnO/ZnO High Electron Mobility Transistor. J. Korean Phys. Soc. 2024, 84, 299–306. [Google Scholar] [CrossRef]
- Verma, Y.K.; Gupta, S.K. A Physics-Based Analytical Model for ZnO-Based HEMT. Micro Nanostructures 2023, 184, 207675. [Google Scholar]
- SILVACO Int. ATLAS User’s Manual; Device Simulation Software: Santa Clara, CA, USA, 2016. [Google Scholar]
- Selberherr, S. Analysis and Simulation of Semiconductor Devices; Springer: New York, NY, USA, 1984. [Google Scholar]
- Hatakeyama, T.; Watanabe, T.; Shinohe, T.; Kojima, K.; Arai, K.; Sano, N. Impact ionization coefficients of 4H silicon carbide. Appl. Phys. Lett. 2004, 85, 1380–1382. [Google Scholar] [CrossRef]
- Hansch, W.; Selberherr, S. MINIMOS 3: A MOSFET Simulator That Includes Energy Balance. IEEE Trans. Electron Devices 1987, 34, 1074–1078. [Google Scholar] [CrossRef]
- Akturk, A.; Goldsman, N.; Aslam, S.; Sigwarth, J.; Herrero, F. Comparison of 4H-SiC impact ionization models using experiments and self-consistent simulations. J. Appl. Phys. 2008, 104, 026101. [Google Scholar] [CrossRef]
- Stefanakis, D.; Makris, N.; Zekentes, K.; Tassis, D. Comparison of Impact Ionization Models for 4H-SiC Along the <0001> Direction, Through Breakdown Voltage Simulations at Room Temperature. IEEE Trans. Electron Devices 2021, 68, 2078–2083. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Park, S.-H. Hybrid High-Power AlGaN/CdZnO/GaN/AlGaN HEMT with High Breakdown Voltage. Materials 2024, 17, 5560. https://doi.org/10.3390/ma17225560
Kim B, Park S-H. Hybrid High-Power AlGaN/CdZnO/GaN/AlGaN HEMT with High Breakdown Voltage. Materials. 2024; 17(22):5560. https://doi.org/10.3390/ma17225560
Chicago/Turabian StyleKim, Bonghwan, and Seung-Hwan Park. 2024. "Hybrid High-Power AlGaN/CdZnO/GaN/AlGaN HEMT with High Breakdown Voltage" Materials 17, no. 22: 5560. https://doi.org/10.3390/ma17225560
APA StyleKim, B., & Park, S. -H. (2024). Hybrid High-Power AlGaN/CdZnO/GaN/AlGaN HEMT with High Breakdown Voltage. Materials, 17(22), 5560. https://doi.org/10.3390/ma17225560