Solidified Salt Melts of the NaCl–KCl–CeF3–EuF3 System as Promising Luminescent Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing of Cerium and Europium Fluorides and the NaCl–KCl Salt System
2.2. X-Ray Diffraction Method
2.3. Spectroscopic Methods
2.3.1. IR Transmittance Spectroscopy
2.3.2. Diffuse Reflectance Spectroscopy
2.3.3. Luminescence Spectroscopy
3. Results and Discussion
3.1. X-Ray Diffractogram
3.2. Results of Spectroscopic Studies
3.2.1. Results of IR Transmission Spectroscopy
3.2.2. Results of Diffuse Reflectance Spectroscopy
3.2.3. Results of Luminescence Spectroscopy
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoerter, J.D.; Ward, C.S.; Bale, K.D.; Gizachew, A.N.; Graham, R.; Reynolds, J.; Ward, M.E.; Choi, C.; Kagabo, J.-L.; Sauer, M.; et al. Effect of UVA Fluence Rate on Indicators of Oxidative Stress in Human Dermal Fibroblasts. Int. J. Biol. Sci. 2008, 4, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Luff, B.J.; Townsend, P.D. High Sensitivity Thermoluminescence Spectrometer. Meas. Sci. Technol. 1993, 4, 65–71. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Y.; Hu, Y.; Gu, H. Ultraviolet Detectors Based on Wide Bandgap Semiconductor Nanowire: A Review. Sensors 2018, 18, 2072. [Google Scholar] [CrossRef]
- Blasse, G.; Grabmaier, B.C. Luminescent Materials; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar] [CrossRef]
- Van Krevel, J.W.H.; Hintzen, H.T.; Metselaar, R.; Meijerink, A. Long Wavelength Ce3+ Emission in Y–Si–O–N Materials. J. Alloys Compd. 1998, 268, 272–277. [Google Scholar] [CrossRef]
- Xu, S.; Li, P.; Wang, Z.; Li, T.; Bai, Q.; Sun, J.; Yang, Z. Luminescence and Energy Transfer of Eu2+/Tb3+/Eu3+ in LiBaBO3 Phosphors with Tunable-Color Emission. J. Mater. Chem. C 2015, 3, 9112–9121. [Google Scholar] [CrossRef]
- Li, T.; Li, P.; Wang, Z.; Xu, S.; Bai, Q.; Yang, Z. Coexistence Phenomenon of Ce3+–Ce4+ and Eu2+–Eu3+ in Ce/Eu Co-Doped LiBaB9O15 Phosphor: Luminescence and Energy Transfer. Phys. Chem. Chem. Phys. 2017, 19, 4131–4138. [Google Scholar] [CrossRef]
- Aguirre De Carcer, I.; Lifante, G.; Cussó, F.; Jaque, F.; Calderón, T. Europium-Doped Alkali Halides as a Selective Ultraviolet Dosimeter Material in the Actinic Region. Appl. Phys. Lett. 1991, 58, 1825–1826. [Google Scholar] [CrossRef]
- Córdoba, C.; Muñoz, J.A.; Cachorro, V.; Cárcer, I.A.D.; Cussó, F.; Jaque, F. The Detection of Solar Ultraviolet-C Radiation Using KCl:Eu2+ Thermoluminescence Dosemeters. J. Phys. D Appl. Phys. 1997, 30, 3024–3027. [Google Scholar] [CrossRef]
- De Cárcer, I.A.; Dántoni, H.L.; Barboza-Flores, M.; Correcher, V.; Jaque, F. KCl:Eu2+ as a Solar UV-C Radiation Dosimeter. Optically Stimulated Luminescence and Thermoluminescence Analyses. J. Rare Earths 2009, 27, 579–583. [Google Scholar] [CrossRef]
- Cordoba-Jabonero, C.; Aguirre De Carcer, I.; Barboza-Flores, M.; Jaque, F. Solar Ultraviolet-B Detectors Using Eu2+ Doped Alkali Halide Crystals. J. Alloys Compd. 2001, 323–324, 847–850. [Google Scholar] [CrossRef]
- Bangaru, S.; Muralidharan, G. Luminescence Studies on Gamma Irradiated KCl: Ce3+ Crystals. Phys. B Condens. Matter 2012, 407, 2185–2189. [Google Scholar] [CrossRef]
- Krishnakumar, D.N.; Rajesh, N.P. Growth and Optical Characterization of Europium and Cerium Doped KCl Single Crystals by Czochralski Method for Dosimetric Applications. J. Electron. Mater. 2019, 48, 1629–1633. [Google Scholar] [CrossRef]
- Cheng, S.; Hunneke, R.E.; Tian, M.; Lukosi, E.; Zhuravleva, M.; Melcher, C.L.; Wu, Y. Self-Assembled natLiCl–CeCl3 Directionally Solidified Eutectics for Thermal Neutron Detection. CrystEngComm 2020, 22, 3269–3273. [Google Scholar] [CrossRef]
- Kuznetsov, S.A.; Gaune-Escard, M. Electronic Conductivity of NaCl-KCl Equimolar Melt Containing Eu(III) and Eu(II) Complexes by Electrochemical Impedance Spectroscopy. Z. Naturforschung A 2006, 61, 486–490. [Google Scholar] [CrossRef]
- Fujii, T.; Nagai, T.; Sato, N.; Shirai, O.; Yamana, H. Electronic Absorption Spectra of Lanthanides in a Molten Chloride. J. Alloys Compd. 2005, 393, L1–L5. [Google Scholar] [CrossRef]
- Zinchenko, V.F.; Volchak, G.V.; Ieriomin, O.G.; Stoyanova, I.V.; Chivirova, N.O.; Kuleshov, S.V.; Doga, P.G. Spectral Properties of Ultrafine Systems LaF3 and EuF3 in a Frozen Melt NaCl-KCl. Surface 2019, 11, 394–402. [Google Scholar] [CrossRef]
- Zinchenko, V.; Ieriomin, O.; Volchak, G.; Stoyanova, I. Spectroscopic Study of Stiffened Saline Melts of NaCl−KCl−LnF3 (Ln = La÷Lu) Systems. Visnyk Lviv Univ. Ser. Chem. 2020, 61, 394. [Google Scholar] [CrossRef]
- Zinchenko, V.; Ieriomin, O.; Antonovich, V.; Chivireva, N.; Stoianova, I.; Volchak, G.; Doga, P. Spectroscopic Properties of Solidified Melts of the EuF3-CeF3-NaCl-KCl System. Ukr. Chem. J. 2020, 86, 120–128. [Google Scholar] [CrossRef]
- Kortüm, G.; Braun, W.; Herzog, G. Principles and Techniques of Diffuse-Reflectance Spectroscopy. Angew. Chem. 1963, 2, 333–341. [Google Scholar] [CrossRef]
- Putz, H. Match!—Phase Analysis Using Powder Diffraction-Version 3. Available online: http://www.crystalimpact.com/download/match3/Manual.pdf (accessed on 9 October 2024).
- Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Jana2020—A New Version of the Crystallographic Computing System Jana. Z. Krist.-Cryst. Mater. 2023, 238, 271–282. [Google Scholar] [CrossRef]
- Vaitkus, A.; Merkys, A.; Sander, T.; Quirós, M.; Thiessen, P.A.; Bolton, E.E.; Gražulis, S. A Workflow for Deriving Chemical Entities from Crystallographic Data and Its Application to the Crystallography Open Database. J. Cheminform. 2023, 15, 123. [Google Scholar] [CrossRef] [PubMed]
- Dorenbos, P. Ce3+ 5d-Centroid Shift and Vacuum Referred 4f-Electron Binding Energies of All Lanthanide Impurities in 150 Different Compounds. J. Lumin. 2013, 135, 93–104. [Google Scholar] [CrossRef]
- Dorenbos, P. Energy of the First 4f7→4f65d Transition of Eu2+ in Inorganic Compounds. J. Lumin. 2003, 104, 239–260. [Google Scholar] [CrossRef]
- Lizzo, S.; Velders, A.H.; Meijerink, A.; Dirksen, G.J.; Blasse, G. The Luminescence of Eu2+ in Magnesium Fluoride Crystals. J. Lumin. 1995, 65, 303–311. [Google Scholar] [CrossRef]
- Antonovich, V.P.; Stoyanova, I.V.; Chivireva, N.A.; Timukhin, E.V.; Zinchenko, V.F.; Efryushina, N.P. Identification and Quantitative Determination of Some Inorganic Lanthanide Compounds by Diffuse Reflectance Spectroscopy. J. Anal. Chem. 2007, 62, 238–244. [Google Scholar] [CrossRef]
- Zinchenko, V.F.; Ieriomin, O.G.; Stoyanova, I.V.; Volchak, G.V.; Babenko, A.V. Diffuse Reflection Spectra of Frozen Salt Melts of the CeF3-EuF3-NaCl-KCl Systems. Odesa Natl. Univ. Herald. Chem. 2022, 27, 20–34. [Google Scholar] [CrossRef]
- Gaune-Escard, M.; Rycerz, L.; Ingier-Stocka, E.; Gadžurić, S. Systematics in the formation of lanthanide halide compounds. In Proceedings of the Ninth International Conference on Molten Slags, Fluxes and Salts (MOLTEN12), Beijing, China, 27–30 May 2012; p. 198. Available online: https://www.pyrometallurgy.co.za/MoltenSlags2012/W189.pdf (accessed on 11 November 2024).
No pos. | Wavelength, nm | Intensity | ||
---|---|---|---|---|
λexc. | λmax. | Imax. × 10–6, CPS | Iint. × 10–7, rel. u. | |
1 | 261 | 431 | 4.53 | 14.30 |
2 | 300 | 432 | 1.66 | 6.19 |
3 | 310 | 432 | 1.55 | 5.44 |
4 | 317 | 430 | 2.20 | 7.85 |
5 | 330 | 429 | 7.31 | 22.79 |
6 | 340 | 430 | 11.7 | 34.91 |
7 | 350 | 430 | 11.1 | 32.74 |
8 | 362 | 430 | 8.95 | 26.98 |
9 | 375 | 430 | 9.04 | 26.42 |
10 | 387 | 430 | 5.57 | 16.20 |
11 | 397 | 430 | 3.87 | 10.48 |
No pos. | Sample | Eu2+ | Eu3+ | ||
---|---|---|---|---|---|
λmax., nm | τ, µs | λmax., nm | τ, µs | ||
1 | CeF3–EuF3 (1:1) + NaCl–KCl (1:9) | 428 * | 1.07 | 591 | 1301 |
2 | CeF3–EuF3 (1:2) + NaCl–KCl (2:8) | 424 * | 1.00 | 591 | 699 ** |
3 | CeF3–EuF3 (2:1) + NaCl–KCl (2:8) | 428 * | 1.02 | 591 | 975 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinchenko, V.; Volchak, G.; Chivireva, N.; Doga, P.; Bobitski, Y.; Ieriomin, O.; Smola, S.; Babenko, A.; Sznajder, M. Solidified Salt Melts of the NaCl–KCl–CeF3–EuF3 System as Promising Luminescent Materials. Materials 2024, 17, 5565. https://doi.org/10.3390/ma17225565
Zinchenko V, Volchak G, Chivireva N, Doga P, Bobitski Y, Ieriomin O, Smola S, Babenko A, Sznajder M. Solidified Salt Melts of the NaCl–KCl–CeF3–EuF3 System as Promising Luminescent Materials. Materials. 2024; 17(22):5565. https://doi.org/10.3390/ma17225565
Chicago/Turabian StyleZinchenko, Viktor, Ganna Volchak, Nataliia Chivireva, Pavlo Doga, Yaroslav Bobitski, Oleh Ieriomin, Serhii Smola, Anton Babenko, and Małgorzata Sznajder. 2024. "Solidified Salt Melts of the NaCl–KCl–CeF3–EuF3 System as Promising Luminescent Materials" Materials 17, no. 22: 5565. https://doi.org/10.3390/ma17225565
APA StyleZinchenko, V., Volchak, G., Chivireva, N., Doga, P., Bobitski, Y., Ieriomin, O., Smola, S., Babenko, A., & Sznajder, M. (2024). Solidified Salt Melts of the NaCl–KCl–CeF3–EuF3 System as Promising Luminescent Materials. Materials, 17(22), 5565. https://doi.org/10.3390/ma17225565