Influence of Phase Composition and Morphology on the Calcium Ion Release of Several Classical and Hybrid Endodontic Cements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Investigated
- (1)
- Hybrid calcium-silicate cements
- TheraCal LC (Bisco Inc., Schaumburg, IL, USA)
- BioCal®-Cap (Harvard Dental International, Hoppegarten, Germany)
- (2)
- Conventional calcium-silicate cements
- Harvard MTA Universal (Harvard Dental International, Hoppegarten, Germany)
- Rootdent (TehnoDent, Belgorod, Russia)
- BioFactor (Imicryl, Konya, Turkey)
2.2. Preparation Procedure
2.3. Photodynamic Therapy Treatment
2.4. Physicochemical Characterization
2.5. Calcium Release Experiments
3. Results
3.1. TheraCal LC
3.2. BioCal® Cap
3.3. Harvard MTA Universal
3.4. Rootdent
3.5. BioFactor
3.6. BioFactor—Photodynamic Therapy (PDT)
3.7. Calcium Release
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spielman, A.I.; Forrai, J. History of the Dental Cement. J. Hist. Cult. Sci. Med. 2024, 14, 397–399. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Siboni, F.; Botero, T.; Boss, M.; Riccitiello, F.; Prati, C. Calcium silicate and calcium hydroxide materials for pulp capping: Biointeractivity, porosity, solubility and bioactivity of current formulations. J. Appl. Biomater. Funct. Mater. 2015, 13, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.; Chandler, N. Calcium hydroxide-based root canal sealers: A review. J. Endod. 2009, 35, 475–480. [Google Scholar] [CrossRef]
- Torabinejad, M.; White, D.J. Tooth Filling Material and Method. U.S. Patent US5769638A, 23 June 1998. [Google Scholar]
- Faraco, I.M.; Holland, R. Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement. Dent. Traum. 2001, 17, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Aeinehchi, M.; Eslami, B.; Ghanbariha, M.; Saffar, A.S. Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp-capping agents in human teeth: A preliminary report. Int. Endodont. J. 2002, 36, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.M.; He, J.; Schweitzer, J.; Opperman, L.A.; Woodmansey, K.F. Bioactive endodontic materials for everyday use: A review. Gen. Dent. 2018, 66, 48–51. [Google Scholar]
- Prati, C.; Gandolfi, M.G. Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dent. Mater. 2015, 31, 351–370. [Google Scholar] [CrossRef]
- Lilkov, V.; Petrov, O.; Kovacheva, D.; Rostovsky, I.; Tzvetanova, Y.; Petkova, V.; Petrova, N. Carbonation process in cement with mineral additions of natural zeolite and silica fume—Early hydration period (minutes) up to 24 hours. Constr. Build. Mat. 2016, 124, 838–845. [Google Scholar] [CrossRef]
- Abusrewil, S.M.; McLean, W.; Scott, J.A. The use of Bioceramics as root-end filling materials in periradicular surgery: A literature review. Saudi Dent. J. 2018, 30, 273–282. [Google Scholar] [CrossRef]
- Nawal, R.R.; Yadav, S.; Talwar, S.; Malhotra, R.K.; Pruthi, P.J.; Goel, S.; Malik, R.; Shailat, M. The influence of calcium silicate-based cement on osseous healing: A systematic review and meta-analysis. J. Conserv. Dent. 2023, 26, 122–133. [Google Scholar] [CrossRef]
- Estrela, C.; Cintra, L.T.A.; Duarte, M.A.H.; Rossi-Fedele, G.; Gavini, G.; Sousa-Neto, M.D. Mechanism of action of Bioactive Endodontic Materials. Braz. Dent. J. 2023, 34, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiao, Y.; Song, W.; Ye, L.; Yang, C.; Xing, Y.; Yuan, Z. Clinical application of calcium silicate-based bioceramics in endodontics. J. Transl. Med. 2023, 21, 853. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, J. Hydration characteristics of biodentine and theracal used as pulp capping materials. Dent. Mater. 2014, 30, 709–715. [Google Scholar] [CrossRef]
- Abedi-Amin, A.; Luzi, A.; Giovarruscio, M.; Paolone, G.; Darvizeh, A.; Agulló, V.V.; Sauro, S. Innovative root-end filling materials based on calcium-silicates and calcium-phosphates. J. Mater. Sci. Mater. Med. 2017, 28, 31. [Google Scholar] [CrossRef]
- Tay, F.R.; Pashley, D.H. Have dentin adhesives become too hydrophilic? J. Can. Dent. Assoc. 2003, 69, 726–731. [Google Scholar]
- Misilli, T.; Uslu, G.; Orhan, K.; Bayrakdar, İ.Ş.; Erdönmez, D.; Taha, Ö. Investigation of the effect of indirect pulp capping materials on dentin mineral density. Braz. J. Oral Sci. 2023, 22, e231303. [Google Scholar] [CrossRef]
- Niederberger, M.; Cölfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287. [Google Scholar] [CrossRef]
- Cai, Y.; Tang, R. Calcium phosphate nanoparticles in biomineralization and biomaterials. J. Mater. Chem. 2008, 18, 3775–3787. [Google Scholar] [CrossRef]
- Cölfen, H. Single crystals with complex form via amorphous precursors. Angew. Chem. Int. Ed. Engl. 2008, 13, 2351–2353. [Google Scholar] [CrossRef]
- Cao, C.Y.; Mei, M.L.; Li, Q.-L.; Lo, E.C.M.; Chu, C.H. Methods for Biomimetic Remineralization of Human Dentine: A Systematic Review. Int. J. Mol. Sci. 2015, 16, 4615–4627. [Google Scholar] [CrossRef]
- Ranjkesh, B.; Leo, M.; Vafaei, A.; Løvschall, H. Pull-out bond strength of titanium post cemented with novel fast-setting calcium silicate cement. Eur. Endod. J. 2021, 6, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.; Spagnuolo, G.; Siboni, F.; Procino, A.; Rivieccio, V.; Pelliccioni, G.; Prati, C.; Rengo, S. Calcium silicate/calcium phosphate biphasic cements for vital pulp therapy: Chemical-physical properties and human pulp cells response. Clin. Oral Investig. 2015, 19, 2075–2089. [Google Scholar] [CrossRef]
- Vafaei, A.; Azima, N.; Erfanparast, L.; Løvschall, H.; Ranjkesh, B. Direct pulp capping of primary molars using a novel fast-setting calcium silicate cement: A randomized clinical trial with 12-month follow-up. Biomater. Investig. Dent. 2019, 6, 73–80. [Google Scholar] [CrossRef]
- Lee, D.; Park, J.-B.; Song, D.; Kim, H.-M.; Kim, S.-Y. Cytotoxicity and Mineralization Potential of Four Calcium Silicate-Based Cements on Human Gingiva-Derived Stem Cells. Coatings 2020, 10, 279. [Google Scholar] [CrossRef]
- Hayashi, Y.; Kawaki, H.; Hori, M.; Shintani, K.; Hasegawa, T.; Tanaka, M.; Kondoh, N.; Yoshida, T.; Kawano, S.; Tamaki, Y. Evaluation of the mechanical properties and biocompatibility of gypsum-containing calcium silicate cements. Dent. Mater. J. 2021, 40, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Primus, C.; Gutmann, J.; Tay, F.; Fuks, A. Calcium silicate and calcium aluminate cements for dentistry reviewed. J. Am. Cer. Soc. 2021, 105, 1841–1863. [Google Scholar] [CrossRef]
- Ponnada, N.; Dalavai, P.; Sajjan, G.; Manohar, P.; Sindhuja, B.; Varma, K. Biomaterials in endodontics: A review. IJDM 2023, 05, 43–51. [Google Scholar] [CrossRef]
- Saghiri, M.; Orangi, J.; Asatourian, A.; Gutmann, J.; García-Godoy, F.; Lotfi, M.; Sheibani, N. Calcium silicate-based cements and functional impacts of various constituents. Dent. Mater. J. 2017, 36, 8–18. [Google Scholar] [CrossRef]
- Ber, B.S.; Hatton, J.F.; Stewart, G.P. Chemical modification of proroot mta to improve handling characteristics and decrease setting time. J. Endod. 2007, 33, 1231–1234. [Google Scholar] [CrossRef]
- Boutsioukis, C.; Noula, G.; Lambrianidis, T. Ex vivo study of the efficiency of two techniques for the removal of mineral trioxide aggregate used as a root canal filling material. J. Endod. 2008, 34, 1239–1242. [Google Scholar] [CrossRef]
- Chng, H.K.; Islam, I.; Yap, A.U.; Tong, Y.W.; Koh, E.T. Properties of a new root-end filling material. J. Endod. 2005, 31, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, M.S.; Witherspoon, D.E.; Gutmann, J.L.; Opperman, L.A. Histological and scanning electron microscopy assessment of various vital pulp-therapy materials. J. Endod. 2003, 29, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Komabayashi, T.; Zhu, Q.; Eberhart, R.; Imai, Y. Current status of direct pulp-capping materials for permanent teeth. Dent. Mater. J. 2016, 35, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dawood, A.E.; Parashos, P.; Wong, R.H.; Reynolds, E.C.; Manton, D.J. Calcium silicate-based cements: Composition, properties, and clinical applications. J. Investig. Clin. Dent. 2017, 8, e12195. [Google Scholar] [CrossRef]
- Camilleri, J.; Sorrentino, F.; Damidot, D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent. Mater. 2013, 29, 580–593. [Google Scholar] [CrossRef]
- Akbulut, M.B.; Bozkurt, D.A.; Terlemez, A.; Akman, M. The push-out bond strength of BIOfactor mineral trioxide aggregate, a novel root repair material. Restor. Dent. Endod. 2019, 44, e5. [Google Scholar] [CrossRef]
- Dutta, A.; Saunders, W. Calcium silicate materials in endodontics. Dent. Updates 2014, 41, 708–722. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Taddei, P.; Siboni, F.; Modena, E.; De Stefano, E.D.; Prati, C. Biomimetic remineralization of human dentin using promising innovative calcium-silicate hybrid “smart” materials. Dent. Mater. 2011, 27, 1055–1069. [Google Scholar] [CrossRef]
- Rodríguez-Lozano, F.J.; López-García, S.; García-Bernal, D.; Sanz, J.L.; Lozano, A.; Pecci-Lloret, M.P.; Melo, M.; López-Ginés, C.; Forner, L. Cytocompatibility and bioactive properties of the new dual-curing resin-modified calcium silicate-based material for vital pulp therapy. Clin. Oral Investig. 2021, 25, 5009–5024. [Google Scholar] [CrossRef]
- Rawat, A.; Geogi, C.C.; Dubey, S.; Singh, P. Bioceramics in endodontics—A review. IP Ind. J. Conserv. Endod. 2022, 7, 163–171. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, D.; Song, D.; Kim, H.-M.; Kim, S.-Y. Biocompatibility and Bioactivity of Set Direct Pulp Capping Materials on Human Dental Pulp Stem Cells. Materials 2020, 13, 3925. [Google Scholar] [CrossRef] [PubMed]
- Wingo, K. A review of dental cements. J. Vet. Dent. 2018, 35, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, M.C.F.; do Carmo Araújo, M.M. Photodynamic therapy in endodontics: Literature review. Braz. J. Implant. Health Sci. 2020, 3, 27–40. [Google Scholar] [CrossRef]
- Siddiqui, S.H.; Awan, K.H.; Javed, F. Bactericidal efficacy of photodynamic therapy against Enterococcus faecalis in infected root canals: A systematic literature review. Photodiagn. Photodyn. Ther. 2013, 10, 632–643. [Google Scholar] [CrossRef]
- Elbanna, A.; Atta, D.; Sherief, D.I. In vitro bioactivity of newly introduced dual-cured resin-modified calcium silicate cement. Dent. Res. J. 2022, 19, 1. [Google Scholar] [CrossRef]
- Galal, M.; Zaki, D.Y.; Rabie, M.I.; El-Shereif, S.M.; Hamdy, T.M. Solubility, pH change, and calcium ion release of low solubility endodontic mineral trioxide aggregate. Bull. Natl. Res. Cent. 2020, 44, 42. [Google Scholar] [CrossRef]
- Primathena, I.; Nurdin, D.; Farah Adang, R.A.; Cahyanto, A. Composition and Functional Groups Evaluation of Indonesian Grey Portland Cement as Material for Dental Application. Key Eng. Mater. 2018, 782, 256–261. [Google Scholar] [CrossRef]
- Okoronkwo, M.U.; Glasser, F.P. Stability of strätlingite in the CASH system. Mater. Struct. 2016, 49, 4305–4318. [Google Scholar] [CrossRef]
- San, X.; Hu, J.; Chen, M.; Niu, H.; Smeets, P.J.M.; Malliakas, C.D.; Deng, J.; Koo, K.; dos Reis, R.; Dravid, V.P.; et al. Unlocking the mysterious polytypic features within vaterite CaCO3. Nat. Commun. 2023, 14, 7858. [Google Scholar] [CrossRef]
- Sun, W.; Jayaraman, S.; Chen, W.; Persson, K.A.; Ceder, G. Nucleation of metastable aragonite CaCO3 in seawater. Proc. Natl. Acad. Sci. USA 2015, 112, 3199–3204. [Google Scholar] [CrossRef]
- Schröder, U. Effects of calcium hydroxide-containing pulp capping agents on pulp cell migration, proliferation, and differentiation. J. Dent. Res. 1985, 64, 541–548. [Google Scholar] [CrossRef]
- Mizuno, M.; Banzai, Y. Calcium ion release from calcium hydroxide stimulated fibronectin gene expression in dental pulp cells and the differentiation of dental pulp cells to mineralized tissue forming cells by fibronectin. Int. Endod. J. 2008, 41, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Takita, T.; Hayashi, M.; Takeichi, O.; Ogiso, B.; Suzuki, N.; Otsuka, K.; Ito, K. Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells. Int. Endod. J. 2006, 39, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.G.; Siboni, F.; Primus, C.M.; Prati, C. Ion Release, Porosity, Solubility, and Bioactivity of MTA Plus Tricalcium Silicate. J. Endod. 2014, 40, 1632–1637. [Google Scholar] [CrossRef] [PubMed]
- Donnermeyer, D.; Bürklein, S.; Dammaschke, T.; Schäfer, E. Endodontic sealers based on calcium silicates: A systematic review. Odontology 2019, 107, 421–436. [Google Scholar] [CrossRef]
- Koutroulis, A.; Kuehne, S.A.; Cooper, P.R.; Camilleri, J. The role of calcium ion release on biocompatibility and antimicrobial properties of hydraulic cements. Sci. Rep. 2019, 9, 19019. [Google Scholar] [CrossRef]
- Ioannidou, K.; Krakowiak, K.J.; Bauchy, M.; Hoover, C.G.; Masoero, E.; Yip, S.; Ulm, F.-J.; Levitz, P.; Pellenq, R.J.-M.; Del Gado, E. Mesoscale texture of cement hydrates. Proc. Natl. Acad. Sci. USA 2016, 113, 2029–2034. [Google Scholar] [CrossRef]
- Nair, P.A.K.; Vasconcelos, W.L.; Paine, K.; Calabria-Holley, J. A review on applications of sol-gel science in cement. Constr. Build. Mater. 2021, 291, 123065. [Google Scholar] [CrossRef]
- Rodriguez-Blanco, J.D.; Shaw, S.; Benning, L.G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 2011, 3, 265–271. [Google Scholar] [CrossRef]
- Seknazi, E.; Mijowska, S.; Polishchuk, I.; Pokroy, B. Incorporation of organic and inorganic impurities into the lattice of metastable vaterite. Inorg. Chem. Front. 2019, 6, 2696–2703. [Google Scholar] [CrossRef]
- Obata, A.; Ozasa, H.; Kasuga, T.; Jones, J.R. Cotton wool-like poly(lactic acid)/vaterite composite scaffolds releasing soluble silica for bone tissue engineering. J. Mater. Sci. Mater. Med. 2013, 24, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Trushina, D.B.; Bukreeva, T.V.; Kovalchuk, M.V.; Antipina, M.N. CaCO3 vaterite microparticles for biomedical and personal care applications. Mater. Sci. Eng. C. Mater. Biol. Appl. 2014, 45, 644–658. [Google Scholar] [CrossRef] [PubMed]
Cement Used | Manufacturer | Type | Consistency | Preparation |
---|---|---|---|---|
TheraCal LC | Bisco Inc., Schaumburg, IL, USA | hybrid | paste-like form in a syringe container | placed in the molds by 1 mm increments and light-cured for 20 s with a photopolymer lamp |
BioCal®-Cap | Harvard Dental International, Germany | hybrid | paste-like form in a syringe container | placed in the molds by 1 mm increments and light-cured for 40 s with a photopolymer lamp |
Harvard MTA Universal | Harvard Dental International, Germany | classic | powder/liquid | p/l ratio—2.6/1.0 total mixing time 30 s |
Rootdent | TehnoDent, Russia | classic | powder/liquid | p/l ratio—2.8/3.1 total mixing time 1 min |
BioFactor | Imicryl, Turkey | classic | powder/liquid | p/l ratio—1 glass vial/3 drops mixing to homogeneous consistency |
BioFactor PDT | Imicryl, Turkey | classic | powder/liquid | p/l ratio—1 glass vial/3 drops mixing to homogeneous consistency PDT-toluidine blue 0.1 mg/mL wavelength 630 nm, intensity of 2000 mW/cm2 twice for 30 s washed with 5 mL of distilled water and dried |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrova, I.; Gentscheva, G.; Spassova, I.; Kovacheva, D. Influence of Phase Composition and Morphology on the Calcium Ion Release of Several Classical and Hybrid Endodontic Cements. Materials 2024, 17, 5568. https://doi.org/10.3390/ma17225568
Dimitrova I, Gentscheva G, Spassova I, Kovacheva D. Influence of Phase Composition and Morphology on the Calcium Ion Release of Several Classical and Hybrid Endodontic Cements. Materials. 2024; 17(22):5568. https://doi.org/10.3390/ma17225568
Chicago/Turabian StyleDimitrova, Ivanka, Galia Gentscheva, Ivanka Spassova, and Daniela Kovacheva. 2024. "Influence of Phase Composition and Morphology on the Calcium Ion Release of Several Classical and Hybrid Endodontic Cements" Materials 17, no. 22: 5568. https://doi.org/10.3390/ma17225568
APA StyleDimitrova, I., Gentscheva, G., Spassova, I., & Kovacheva, D. (2024). Influence of Phase Composition and Morphology on the Calcium Ion Release of Several Classical and Hybrid Endodontic Cements. Materials, 17(22), 5568. https://doi.org/10.3390/ma17225568