The Effect of Bi on the Kinetics of Growths, Microstructure and Corrosion Resistance of Hot-Dip Galvanized Coatings
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Hot-Dipping
2.2. Microstructure Characterization
2.3. Corrosion Testing Method
3. Results and Discussion
3.1. Structure and Kinetics Growth of Coatings
3.2. Microstructure (SEM) and EDS Analysis of Coatings Surface
3.3. Cross-Section Microstructure of Coatings
3.4. Results of Corrosion Resistance
3.4.1. Neutral Salt Spray Test (NSST)
3.4.2. Sulfur Dioxide Test (SDT) in a Humid Atmosphere
3.4.3. Corrosion Resistance Determined via an Electrochemical Test
4. Conclusions
- The addition of 0.04 and 0.12 wt.% Bi reduces the total thickness of the coatings and their intermediate layers, including the outer layer η, the ζ intermetallic layer and the δ1 intermetallic layer. An increase in the Bi content in the bath to 0.4 wt.% increases the thickness of the total coating and the thickness of its intermediate layers;
- In the microstructure of the coatings obtained in baths containing Bi, the release of Bi was found mainly on the coating surface, but also on the cross-section of the outer layer and ζ intermetallic layer. The amount of Bi precipitates increases with the increase in the Bi content in the bath;
- Direct corrosion tests (NSST and SDT) showed an increase in corrosion wear in the initial stage of the corrosion process and its relationship with the increase in Bi content in the bath;
- Electrochemical tests show that the addition of Bi results in lower corrosion resistance of the coating. For higher Bi concentrations, an increase in the dispersion of corrosion parameters is observed;
- The presence of Bi precipitates on the coating surface due to the positive standard potential may initiate and accelerate the outer layer η corrosion process, but also accelerate the ζ intermetallic layer corrosion process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fasoyino, F.A.; Weinberg, F. Spangle Formation in Galvanized Sheet Steel Coatings. Met. Trans. B-Process Met. 1990, 21, 549–558. [Google Scholar] [CrossRef]
- Strutzenberger, J.; Faderl, J. Solidification and Spangle Formation of Hot-Dip-Galvanized Zinc Coatings. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 1998, 29, 631–646. [Google Scholar] [CrossRef]
- Moser, Z.; Zabdyr, L.; Gasior, W.; Salawa, J.; Zakulski, W. The Pb-Zn (Lead-Zinc) System. J. Phase Equilibria 1994, 15, 643–649. [Google Scholar] [CrossRef]
- Krepski, R.P. The influence of lead in after-fabrication hot dip galvanizing. In Proceedings of the 14th International Galvanizing Conference, London, UK, 6–12 June 1986; Zinc Development Association: London, UK, 1986; pp. 6/6–6/12. [Google Scholar]
- Beguin, P.; Bosschaerts, M.; Dhaussy, D.; Pankert, R.; Gilles, M. Galveco a Solution for Galvanizing Reactive Steel. In Proceedings of the 19th International Galvanizing Conference, EGGA, Berlin, Germany, 1–8 March 2000. [Google Scholar]
- Reumont, G.; Perrot, P. Fundamental Study of Lead Additions in Industrial Zinc. In Proceedings of the 18th International Galvanizing Conference, EGGA, Birmingham, UK, 8–11 June 1997. [Google Scholar]
- Gagné, M. Zinc-Bismuth Alloys for After-Fabrication Hot-Dip Galvanizing. In Proceedings of the AGA TechForum 96, Nashville, Tennessee, 16–18 October 1996. [Google Scholar]
- Gagné, M. Update: Zinc-Bismuth Alloys for After-Fabrication Hot-Dip Galvanizing. In Proceedings of the AGA TechForum 97, Houston, TX, USA, 22–24 October 1997. [Google Scholar]
- Schulz, W.D.; Thiele, M. Feuerverzinken von Stückgut, 2nd ed.; Eugen LEUZE VERLAG: Bad Saulgau, Germany, 2012. [Google Scholar]
- Gagné, M. Industrial Testing of Zinc-Bismuth Alloys for After-Fabrication Hot-Dip Galvanizing. In Proceedings of the Intergalva 97, Birmingham, UK, 8–11 June 1997. [Google Scholar]
- Pistofidis, N.; Vourlias, G.; Konidaris, S.; Pavlidou, E.; Stergiou, A.; Stergioudis, G. The effect of bismuth on the structure of zinc hot-dip galvanized coating. Mater. Lett. 2007, 61, 994–997. [Google Scholar] [CrossRef]
- Pistofidis, N.; Vourlias, G.; Konidaris, S.; Pavlidou, E.; Stergioudis, G. The combined effect of nickel and bismuth on the structure of hot-dip zinc coatings. Mater. Lett. 2007, 61, 2007–2010. [Google Scholar] [CrossRef]
- Fratesi, R.; Ruffini, N.; Malavolta, M.; Bellezze, T. Contemporary use of Ni and Bi in hot-dip galvanizing. Surf. Coat. Technol. 2002, 157, 34–39. [Google Scholar] [CrossRef]
- Kania, H.; Saternus, M.; Kudláček, J.; Svoboda, J. Microstructure characterization and corrosion resistance of zinc coating obtained in a Zn-AlNiBi galvanizing bath. Coatings 2020, 10, 758. [Google Scholar] [CrossRef]
- Kania, H.; Saternus, M.; Kudláček, J. Impact of Bi and Sn on microstructure and corrosion resistance of zinc coatings obtained in Zn-AlNi bath. Materials 2020, 13, 3788. [Google Scholar] [CrossRef] [PubMed]
- ISO 9227:2022; Corrosion Tests in Artificial Atmospheres—Salt Spray Tests; Polish Version PN-EN ISO 9227:2023-02. Polish Committee for Standardization: Warszawa. Poland, 2023.
- ISO 22479:2019; Corrosion of Metals and Alloys—Sulfur dioxide test in a humid atmosphere (fixed gas method), Polish Version PN-EN ISO 22479:2022-12. Polish Committee for Standardization: Warszawa, Poland, 2022.
- ISO 8407:2021; Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimens, Polish Version PN-EN ISO 8407:2021-07. Polish Committee for Standardization: Warszawa, Poland, 2021.
- Kania, H.; Mendala, J.; Kozuba, J.; Saternus, M. Development of bath chemical composition for batch hot-dip galvanizing—A Review. Materials 2020, 13, 4168. [Google Scholar] [CrossRef] [PubMed]
- Mackowiak, J.; Short, N.R. Metallurgy of galvanized coatings. Int. Met. Rev. 1979, 24, 1–19. [Google Scholar] [CrossRef]
- Tatarek, A. Analysis of Physicochemical Phenomena at the Solid-Liquid Interface During the Hot-Dip Galvanizing Process. Ph.D. Thesis, Silesian University of Technology, Gliwice, Poland, 2007. [Google Scholar]
- Tatarek, A.; Saternus, M. Investigation of Diffusion Dissolution Phenomena of Reactive Steels in a Zinc Bath with the Addition of Bismuth. Ochr. Przed Koroz. 2018, 7, 186–190. (In Polish) [Google Scholar]
- Massalski, T.B. Binary Alloy Phase Diagrams, 2nd ed.; 5. Print; ASM International: Metals Park, OH, USA, 2007. [Google Scholar]
- Malakhov, D.V. Thermodynamic assessment of the Bi-Zn system. Calphad 2000, 24, 1–14. [Google Scholar] [CrossRef]
- Maaß, P.; Peißker, P. Handbook of Hot-Dip Galvanization; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Liberski, P.; Tatarek, A.; Kania, H.; Podolski, P. Coating growth on silicon-containing iron alloys in hot dip galvanizing process. In Proceedings of the 22nd International Galvanizing Conference Intergalva 2009, EGGA, Madrid, Spain, 8–12 June 2009; EGGA: Madrid, Spain, 2009; pp. 181–187. [Google Scholar]
- Kopyciński, D. The shaping of zinc coating on surface steels and ductile iron casting. Arch. Foundry Eng. 2010, 10, 463–468. [Google Scholar]
- Zhang, X.G. Corrosion and Electrochemistry of Zinc; Springer: New York, NY, USA, 2013. [Google Scholar]
- Kania, H.; Sipa, J. Microstructure characterization and corrosion resistance of zinc coating obtained on high-strength grade 10.9 bolts using a new thermal diffusion process. Materials 2019, 12, 1400. [Google Scholar] [CrossRef] [PubMed]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics, 90th ed.; Taylor and Francis Group LLC.: London, UK, 2010. [Google Scholar]
- Radu, T.; Vlad, M. Zinc coatings on steel substrate attained by different elements added. Teh. J. 2011, 18, 133–139. [Google Scholar]
- Radu, T.; Ciocan, A.; Potecasu, F.; Balint, L. Obtaining and characterizing Zn-Al-Bi coatings on steel band. In Proceedings of the 21st International Conference on Metallurgy and Materials, METAL 2012, Brno, Czech Republic, 23–25 May 2012. Article No. ZV12. [Google Scholar]
Content [wt.%] | |||||||
---|---|---|---|---|---|---|---|
C | Si | Mn | S | P | Fe and others | ||
Steel | S235JRG2 | 0.137 | 0.021 | 0.637 | 0.004 | 0.006 | rest |
Al | Fe | Pb | Bi | Sn | Zn and others | ||
Bath | Zn | 0.0004 | 0.034 | 0.001 | 0.001 | 0.0001 | rest |
Zn-0.04Bi | 0.0005 | 0.031 | 0.001 | 0.044 | 0.0001 | rest | |
Zn-0.12Bi | 0.0004 | 0.033 | 0.001 | 0.11 | 0.0001 | rest | |
Zn-0.4Bi | 0.0004 | 0.033 | 0.001 | 0.36 | 0.0001 | rest |
Phase | Bath | Trend Function Equation | Correlation Coefficient R2 | Growth Rate Constant k [µm/sn] | Growth Rate Time Constant n |
---|---|---|---|---|---|
ζ intermetallic | Zn | y = 4.6637x0.3301 | 0.9919 | 4.6637 | 0.3301 |
Zn-0.04Bi | y = 5.3585x0.3063 | 0.9900 | 5.3585 | 0.3063 | |
Zn-0.12Bi | y = 5.4159x0.2992 | 0.9804 | 5.4159 | 0.2992 | |
Zn-0.4Bi | y = 4.6958x0.3339 | 0.9960 | 4.6958 | 0.3339 | |
δ1 intermetallic | Zn | y = 0.9432x0.4865 | 0.9910 | 0.9432 | 0.4865 |
Zn-0.04Bi | y = 0.7213x0.5248 | 0.9985 | 0.7213 | 0.5248 | |
Zn-0.12Bi | y = 0.8606x0.4901 | 0.9745 | 0.8606 | 0.4901 | |
Zn-0.4Bi | y = 0.8889x0.5041 | 0.9852 | 0.8889 | 0.5041 |
Point No. | Zn | Bi | ||
---|---|---|---|---|
wt.% | at.% | wt.% | at.% | |
1 | 100.0 | 100.0 | - | - |
2 | 100.0 | 100.0 | - | - |
3 | 38.7 | 66.9 | 61.3 | 33.1 |
4 | 99.8 | 99.9 | 0.2 | 0.1 |
5 | 22.8 | 48.5 | 77.2 | 51.5 |
6 | 99.8 | 99.9 | 0.2 | 0.1 |
7 | 21.1 | 46.1 | 78.9 | 53.9 |
Area 0.25 mm2 | ||||
0.04 Bi | 99.3 | 99.8 | 0.7 | 0.22 |
0.12 Bi | 98.9 | 99.7 | 1.1 | 0.35 |
0.4 Bi | 96.4 | 98.8 | 3.6 | 1.16 |
Point No. | Zn | Bi | ||
---|---|---|---|---|
wt.% | at.% | wt.% | at.% | |
1 | 100.0 | 100.0 | - | - |
2 | 100.0 | 100.0 | - | - |
3 | 22.9 | 48.7 | 77.1 | 51.3 |
4 | 100.0 | 100.0 | - | - |
5 | 26.1 | 53.0 | 73.9 | 47.0 |
6 | 11.7 | 29.7 | 88.3 | 70.3 |
7 | 100.0 | 100.0 | - | - |
Type of Coatings | jcorr μAcm−2 | Ecorr mVSCE |
---|---|---|
Zn | 2.34 ± 0.08 | −1120 ± 17 |
Zn-0.04Bi | 3.21 ± 0.36 | −1130 ± 21 |
Zn-0.12Bi | 4.13 ± 2.23 | −1115 ± 58 |
Zn-0.4Bi | 2.94 ± 0.36 | −1121 ± 30 |
Type of Coatings | Qf µFcm−2 | nf | Rf Ωcm2 | Qdl µFcm−2 | ndl | Rct Ωcm2 |
---|---|---|---|---|---|---|
Zn | 48 | 0.82 | 1260 | 969 | 0.74 | 1513 |
Zn-0.04Bi | 105 | 0.74 | 708 | 1594 | 0.82 | 980 |
Zn-0.12Bi | 123 | 0.78 | 1896 | 3342 | 0.67 | 754 |
Zn-0.4Bi | 78 | 0.77 | 1125 | 472 | 0.74 | 1957 |
Point No. | Fe | Zn | Bi | |||
---|---|---|---|---|---|---|
wt.% | at.% | wt.% | at.% | wt.% | at.% | |
1 | 6.3 | 7.3 | 93.7 | 92.7 | ||
2 | 9.7 | 11.2 | 90.3 | 88.8 | ||
3 | 8.8 | 10.2 | 91.2 | 89.8 | ||
4 | 6.1 | 7.1 | 93.9 | 92.9 | ||
5 | 5.2 | 6.3 | 88.6 | 91.7 | 6.2 | 2.0 |
6 | 6.9 | 8.0 | 93.1 | 92.0 | ||
7 | 10.2 | 11.7 | 89.8 | 88.3 | ||
8 | 6.1 | 7.5 | 84.8 | 89.5 | 9.1 | 3.0 |
9 | 5.5 | 6.4 | 94.5 | 93.62 | ||
10 | 8.4 | 9.7 | 91.6 | 90.30 | ||
11 | 4.9 | 6.2 | 82.8 | 89.62 | 12.3 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kania, H.; Otmačić Ćurković, H.; Kudláček, J.; Kapitanović, A.; Nackiewicz, J.; Černý, D.; Konopkin, G. The Effect of Bi on the Kinetics of Growths, Microstructure and Corrosion Resistance of Hot-Dip Galvanized Coatings. Materials 2024, 17, 5604. https://doi.org/10.3390/ma17225604
Kania H, Otmačić Ćurković H, Kudláček J, Kapitanović A, Nackiewicz J, Černý D, Konopkin G. The Effect of Bi on the Kinetics of Growths, Microstructure and Corrosion Resistance of Hot-Dip Galvanized Coatings. Materials. 2024; 17(22):5604. https://doi.org/10.3390/ma17225604
Chicago/Turabian StyleKania, Henryk, Helena Otmačić Ćurković, Jan Kudláček, Angela Kapitanović, Joanna Nackiewicz, Daniel Černý, and Grzegorz Konopkin. 2024. "The Effect of Bi on the Kinetics of Growths, Microstructure and Corrosion Resistance of Hot-Dip Galvanized Coatings" Materials 17, no. 22: 5604. https://doi.org/10.3390/ma17225604
APA StyleKania, H., Otmačić Ćurković, H., Kudláček, J., Kapitanović, A., Nackiewicz, J., Černý, D., & Konopkin, G. (2024). The Effect of Bi on the Kinetics of Growths, Microstructure and Corrosion Resistance of Hot-Dip Galvanized Coatings. Materials, 17(22), 5604. https://doi.org/10.3390/ma17225604