Design of Composite N-Doped Carbon Nanofiber/TiO2/Diatomite Separator for Lithium–Sulfur Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Separator Composite Materials
2.3. Preparation of Cathode Materials
2.4. Li2S6 Adsorption Capacity Test
2.5. Electrochemical Testing
2.6. Material Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, C.; Jiang, Z.; Chen, X.; Luo, W.; Zhou, T.; Yang, J. Lithium metal based battery systems with ultra-high energy density beyond 500 W h kg−1. Chem. Commun. 2024, 60, 10245–10264. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, K.; Zhang, G.; Li, S.; Xu, Y.; Zhang, X.; Zhang, X.; Zheng, S.; Sun, X.; Ma, Y. Fast Charging Anode Materials for Lithium-Ion Batteries: Current Status and Perspectives. Adv. Funct. Mater. 2022, 32, 2200796. [Google Scholar] [CrossRef]
- Wang, Z.; Du, Z.; Wang, L.; He, G.; Parkin, I.P.; Zhang, Y.; Yue, Y. Disordered materials for high-performance lithium-ion batteries: A review. Nano Energy 2024, 121, 109250. [Google Scholar] [CrossRef]
- Lv, Z.-C.; Wang, P.-F.; Wang, J.-C.; Tian, S.-H.; Yi, T.-F. Key challenges, recent advances and future perspectives of rechargeable lithium-sulfur batteries. J. Ind. Eng. Chem. 2023, 124, 68–88. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, A. Redox mediators for high performance lithium-sulfur batteries: Progress and outlook. Chem. Eng. J. 2024, 495, 153648. [Google Scholar] [CrossRef]
- Zhou, S.; Shi, J.; Liu, S.; Li, G.; Pei, F.; Chen, Y.; Deng, J.; Zheng, Q.; Li, J.; Zhao, C.; et al. Visualizing interfacial collective reaction behaviour of Li–S batteries. Nature 2023, 621, 75–81. [Google Scholar] [CrossRef]
- Ji, X.; Nazar, L.F. Advances in Li–S batteries. J. Mater. Chem. 2010, 20, 9821–9826. [Google Scholar] [CrossRef]
- Nakamura, N.; Ahn, S.; Momma, T.; Osaka, T. Future potential for lithium-sulfur batteries. J. Power Sources 2023, 558, 232566. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.-T.; Zhang, S.-T.; Pang, H. Promoting performance of lithium–sulfur battery via in situ sulfur reduced graphite oxide coating. Rare Met. 2020, 40, 417–424. [Google Scholar] [CrossRef]
- Bi, M.; Chao, M.; Zhang, C.; Yu, H.; Zhang, X.; Liu, H.; Zhang, T.; Mi, J.; Shen, X.; Yao, S. Self-assembled flower-like structure of copper cobaltate nanosheets supported on nitrogen-doped carbon nanofibers as functional electrocatalyst for lithium/polysulfides batteries. J. Alloys Compd. 2023, 934, 167916. [Google Scholar] [CrossRef]
- Cao, Z.-J.; Zhang, Y.-Z.; Cui, Y.-L.; Li, B.; Yang, S.-B. Harnessing the unique features of MXenes for sulfur cathodes. Tungsten 2020, 2, 162–175. [Google Scholar] [CrossRef]
- Xiao, Y.; Yamamoto, K.; Matsui, Y.; Watanabe, T.; Sakuda, A.; Nakanishi, K.; Uchiyama, T.; Hayashi, A.; Shingubara, S.; Tatsumisago, M.; et al. Comparison of Sulfur Cathode Reactions between a Concentrated Liquid Electrolyte System and a Solid-State Electrolyte System by Soft X-Ray Absorption Spectroscopy. ACS Appl. Energy Mater. 2020, 4, 186–193. [Google Scholar] [CrossRef]
- Scheers, J.; Fantini, S.; Johansson, P. A review of electrolytes for lithium-sulphur batteries. J. Power Sources 2014, 255, 204–218. [Google Scholar] [CrossRef]
- Shang, J.; Ma, C.; Zhang, C.; Zhang, W.; Shen, B.; Wang, F.; Guo, S.; Yao, S. Nitrogen-doped carbon encapsulated trimetallic CoNiFe alloy nanoparticles decorated carbon nanotube hybrid composites modified separator for lithium-sulfur batteries. J. Energy Storage 2024, 82, 110552. [Google Scholar] [CrossRef]
- Xu, K.; Liang, X.; Wang, L.-L.; Wang, Y.; Yun, J.-F.; Sun, Y.; Xiang, H.-F. Tri-functionalized polypropylene separator by rGO/MoO2 composite for high-performance lithium–sulfur batteries. Rare Met. 2021, 40, 2810–2818. [Google Scholar] [CrossRef]
- Zhuang, R.; Yao, S.; Shen, X.; Li, T. A freestanding MoO2-decorated carbon nanofibers interlayer for rechargeable lithium sulfur battery. Int. J. Energy Res. 2019, 43, 1111–1120. [Google Scholar] [CrossRef]
- Zhong, S.; Yuan, B.; Guang, Z.; Chen, D.; Li, Q.; Dong, L.; Ji, Y.; Dong, Y.; Han, J.; He, W. Recent progress in thin separators for upgraded lithium ion batteries. Energy Storage Mater. 2021, 41, 805–841. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, J.; Wu, M.; Li, R.; Zhang, A.; Lin, Y. Polyacrylamide quaternary ammonium salts based on stable adsorption in soil and its application on the control of soil-borne fungal disease. Eur. Polym. J. 2024, 202, 112604. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, L.; Zhang, C.; Liu, L.; Li, Y.; Qiao, Z.; Lin, J.; Wei, Q.; Wang, L.; Xie, Q.; et al. Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High-Performance Li–S Batteries. Adv. Sci. 2022, 9, 2106004. [Google Scholar] [CrossRef]
- Cheng, M.; Yan, R.; Yang, Z.; Tao, X.; Ma, T.; Cao, S.; Ran, F.; Li, S.; Yang, W.; Cheng, C. Polysulfide Catalytic Materials for Fast-Kinetic Metal–Sulfur Batteries: Principles and Active Centers. Adv. Sci. 2022, 9, 2102217. [Google Scholar] [CrossRef]
- Su, Y.-S.; Manthiram, A. Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 2012, 3, 1166. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.-Q.; Wang, H.-M.; Yang, L.-B.; Ma, C.; Wang, J.-T.; Qiao, W.-M.; Ling, L.-C. A review of the use of metal oxide/carbon composite materials to inhibit the shuttle effect in lithium-sulfur batteries. New Carbon Mater. 2024, 39, 201–220. [Google Scholar] [CrossRef]
- Qu, Q.; Guo, J.; Wang, H.; Zhang, K.; Li, J. Carbon nanofibers implanted porous catalytic metal oxide design as efficient bifunctional electrode host material for lithium-sulfur battery. Electrochim. Acta 2024, 473, 143454. [Google Scholar] [CrossRef]
- Chang, C.; Guan, X.; Wang, P.; Zhou, X.; Xie, X.; Ye, Y. Electrically and thermally conductive Al2O3/C nanofiber membrane filled with organosilicon as a multifunctional integrated interlayer for lithium-sulfur batteries under lean-electrolyte and thermal gradient. Chem. Eng. J. 2022, 442, 135825. [Google Scholar] [CrossRef]
- Wei, C.; Shao, X.; Wang, T.; Gan, R.; Liu, H.; Wang, G.; Ding, W.; Liu, X. Advanced Lithium-sulfur batteries enabled by a flexible electrocatalytic membrane of TiO2 and SiO2 co-decorated necklace-like carbon nanofibers. Appl. Surf. Sci. 2024, 659, 159923. [Google Scholar] [CrossRef]
- Lv, Y.; Su, Z.; Qiu, L.; Liu, Z.; Bai, B.; Yuan, Y.; Du, P. A multifunctional solution to enhance capacity and stability in lithium-sulfur batteries: Incorporating hollow CeO2 nanorods into carbonized non-woven fabric as an interlayer. J. Colloid Interface Sci. 2024, 674, 873–883. [Google Scholar] [CrossRef]
- Wang, H.; Xu, C.; Du, X.; Liu, G.; Han, W.; Li, J. Ordered porous metal oxide embedded dense carbon network design as high-performance interlayer for stable lithium-sulfur batteries. Chem. Eng. J. 2023, 471, 144338. [Google Scholar] [CrossRef]
- Wang, J.; Han, W. A Review of Heteroatom Doped Materials for Advanced Lithium–Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2107166. [Google Scholar] [CrossRef]
- Nong, S.; Huang, D.; Li, Y.; Yang, R.; Xie, J.; Li, J.; Huang, H.; Liang, X.; Li, G.; Lan, Z.; et al. Multifunction-balanced porous carbon and its application in sulfur-loading host and separator modification for lithium–sulfur batteries. J. Energy Storage 2024, 81, 110296. [Google Scholar] [CrossRef]
- Tang, T.; Hou, Y. Chemical Confinement and Utility of Lithium Polysulfides in Lithium Sulfur Batteries. Small Methods 2019, 4, 1900001. [Google Scholar] [CrossRef]
- Le, Q.J.; Wang, T.; Tran, D.N.H.; Dong, F.; Zhang, Y.X.; Losic, D. Morphology-controlled MnO2 modified silicon diatoms for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 10856–10865. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, H.; Liu, Y.; Zhao, F.; Li, J.; He, X. Defective TiO2-graphene heterostructures enabling in-situ electrocatalyst evolution for lithium-sulfur batteries. J. Energy Chem. 2021, 62, 508–515. [Google Scholar] [CrossRef]
- Yang, D.; Wu, T.; Gao, H.; Jia, M.; Ji, L.; Wang, J.; Zhuang, Q.; Yu, B.; Lu, L.; Zhang, Y.; et al. Rutile titanium dioxide and graphene-like OCN tailoring free-standing carbon fiber aerogel as polysulfide anchoring materials for lithium–sulfur batteries. Mater. Today Sustain. 2023, 24, 100573. [Google Scholar] [CrossRef]
- Barlow, Z.; Wei, Z.; Wang, R. Surface and defect engineered polar titanium dioxide nanotubes as an effective polysulfide host for high-performance Li-S batteries. Mater. Chem. Phys. 2023, 309, 128316. [Google Scholar] [CrossRef]
- Yang, W.; Li, M.; Pan, K.; Guo, L.; Wu, J.; Li, Z.; Yang, F.; Lin, K.; Zhou, W. Surface engineering of mesoporous anatase titanium dioxide nanotubes for rapid spatial charge separation on horizontal-vertical dimensions and efficient solar-driven photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2021, 586, 75–83. [Google Scholar] [CrossRef]
- Sabbaghi, A.; Wong, C.H.; Hu, X.; Lam, F.L. Titanium dioxide nanotube arrays (TNTAs) as an effective electrocatalyst interlayer for sustainable high-energy density lithium-sulfur batteries. J. Alloys Compd. 2022, 899, 163268. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, W.; Yang, Y.; Yang, S.; Wang, C.; Yuan, Y.; Wu, Y.; Kang, W.; Tang, Y. Green and facile fabrication of porous titanium dioxide as efficient sulfur host for advanced lithium-sulfur batteries: An air oxidation strategy. J. Colloid Interface Sci. 2021, 583, 157–165. [Google Scholar] [CrossRef]
- Qian, C.; Guo, X.; Zhang, W.; Yang, H.; Qian, Y.; Xu, F.; Qian, S.; Lin, S.; Fan, T. Co3O4 nanoparticles on porous bio-carbon substrate as catalyst for oxygen reduction reaction. Microporous Mesoporous Mater. 2019, 277, 45–51. [Google Scholar] [CrossRef]
- Chen, T.; Chen, J.; Waki, K. An activity recoverable carbon nanotube based electrocatalysts: Rapid annealing effects and importance of defects. Carbon 2018, 129, 119–127. [Google Scholar] [CrossRef]
- He, Y.; Miao, X.; Wang, W.; Li, J.; Zhang, J.; Li, R.; Yang, L.; Liu, L.; Wang, Y.; Guo, Z.; et al. High-volumetric pseudocapacitive sodium storage in densely packed mesoporous titanium dioxide-carbon composite. Cell Rep. Phys. Sci. 2024, 5, 102123. [Google Scholar] [CrossRef]
- Li, J.; Han, L.; Zhang, X.; Sun, H.; Liu, X.; Lu, T.; Yao, Y.; Pan, L. Multi-role TiO2 layer coated carbon@few-layered MoS2 nanotubes for durable lithium storage. Chem. Eng. J. 2021, 406, 126873. [Google Scholar] [CrossRef]
- Xu, L.; Niu, J.; Xie, H.; Ma, X.; Zhu, Y.; Crittenden, J. Effective degradation of aqueous carbamazepine on a novel blue-colored TiO2 nanotube arrays membrane filter anode. J. Hazard. Mater. 2021, 402, 123530. [Google Scholar] [CrossRef]
- Chen, Y.; Choi, S.; Su, D.; Gao, X.; Wang, G. Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries. Nano Energy 2018, 47, 331–339. [Google Scholar] [CrossRef]
- Wang, D.; Bai, X.; Yang, H.; Du, G.; Wang, Z.; Man, J.; Du, F.; Zhang, P. Chitosan-derived N-doped porous carbon with fiber network structure for advanced lithium-sulfur batteries. J. Energy Storage 2024, 99, 113302. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, C.; Yin, Y.; Wan, L.; Guo, Y. Sulfur Encapsulated in Graphitic Carbon Nanocages for High-Rate and Long-Cycle Lithium–Sulfur Batteries. Adv. Mater. 2016, 28, 9539–9544. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Qiu, Z.; Wang, C.; Yuan, Y.; Yang, Y.; Zhang, X.; Ye, Y.; Tang, Y. Design and interface optimization of a sandwich-structured cathode for lithium-sulfur batteries. Chem. Eng. J. 2020, 381, 122648. [Google Scholar] [CrossRef]
- Wu, Z.; Yuan, L.; Han, Q.; Lan, Y.; Zhou, Y.; Jiang, X.; Ouyang, X.; Zhu, J.; Wang, X.; Fu, Y. Phosphorous/oxygen co-doped mesoporous carbon bowls as sulfur host for high performance lithium-sulfur batteries. J. Power Sources 2020, 450, 227658. [Google Scholar] [CrossRef]
- Yao, S.-S.; He, Y.-P.; Arslan, M.; Zhang, C.-J.; Shen, X.-Q.; Li, T.-B.; Qin, S.-B. The electrochemical behavior of nitrogen-doped carbon nanofibers derived from a polyacrylonitrile precursor in lithium sulfur batteries. New Carbon Mater. 2021, 36, 606–615. [Google Scholar] [CrossRef]
- Lei, T.; Xie, Y.; Wang, X.; Miao, S.; Xiong, J.; Yan, C. TiO2 Feather Duster as Effective Polysulfides Restrictor for Enhanced Electrochemical Kinetics in Lithium–Sulfur Batteries. Small 2017, 13, 1701013. [Google Scholar] [CrossRef]
- Gu, X.; Li, L.; Wang, Y.; Dai, P.; Wang, H.; Zhao, X. Hierarchical tubular structures constructed from rutile TiO2 nanorods with superior sodium storage properties. Electrochim. Acta 2016, 211, 77–82. [Google Scholar] [CrossRef]
- Wang, H.; Yang, X.; Wu, Q.; Zhang, Q.; Chen, H.; Jing, H.; Wang, J.; Mi, S.-B.; Rogach, A.L.; Niu, C. Encapsulating Silica/Antimony into Porous Electrospun Carbon Nanofibers with Robust Structure Stability for High-Efficiency Lithium Storage. ACS Nano 2018, 12, 3406–3416. [Google Scholar] [CrossRef]
- Song, X.; Gao, T.; Wang, S.; Bao, Y.; Chen, G.; Ding, L.-X.; Wang, H. Free-standing sulfur host based on titanium-dioxide-modified porous-carbon nanofibers for lithium-sulfur batteries. J. Power Sources 2017, 356, 172–180. [Google Scholar] [CrossRef]
- Wang, P.; Xi, B.; Huang, M.; Chen, W.; Feng, J.; Xiong, S. Emerging Catalysts to Promote Kinetics of Lithium–Sulfur Batteries. Adv. Energy Mater. 2021, 11, 2002893. [Google Scholar] [CrossRef]
- Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L.F. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 2015, 6, 5682. [Google Scholar] [CrossRef]
- Tao, X.; Wang, J.; Liu, C.; Wang, H.; Yao, H.; Zheng, G.; Seh, Z.W.; Cai, Q.; Li, W.; Zhou, G.; et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 2016, 7, 11203. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Moon, S.; Park, J.J.; Yoo, Y.; Suk, J. Impeding polysulfide diffusion strategies in lithium-sulfur batteries using 3D porous carbon nanosheets integrated by cathode and functional separator. Appl. Surf. Sci. 2024, 670, 160625. [Google Scholar] [CrossRef]
- Yao, H.; Yan, K.; Li, W.; Zheng, G.; Kong, D.; Seh, Z.W.; Narasimhan, V.K.; Liang, Z.; Cui, Y. Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy Environ. Sci. 2014, 7, 3381–3390. [Google Scholar] [CrossRef]
- Zhou, G.; Tian, H.; Jin, Y.; Tao, X.; Liu, B.; Zhang, R.; Seh, Z.W.; Zhuo, D.; Liu, Y.; Sun, J.; et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845. [Google Scholar] [CrossRef]
- Waluś, S.; Barchasz, C.; Bouchet, R.; Alloin, F. Electrochemical impedance spectroscopy study of lithium–sulfur batteries: Useful technique to reveal the Li/S electrochemical mechanism. Electrochim. Acta 2020, 359, 136944. [Google Scholar] [CrossRef]
- Wei, C.; Han, Y.; Liu, H.; Gan, R.; Li, Q.; Wang, Y.; Hu, P.; Ma, C.; Shi, J. Advanced lithium–sulfur batteries enabled by a SnS2-Hollow carbon nanofibers Flexible Electrocatalytic Membrane. Carbon 2021, 184, 1–11. [Google Scholar] [CrossRef]
- Wang, S.; Gao, F.; Zhao, Y.; Liu, N.; Tan, T.; Wang, X. Two-Dimensional CeO2/RGO Composite-Modified Separator for Lithium/Sulfur Batteries. Nanoscale Res. Lett. 2018, 13, 377. [Google Scholar] [CrossRef] [PubMed]
- Al-Tahan, M.A.; Dong, Y.; Shrshr, A.E.; Liu, X.; Zhang, R.; Guan, H.; Kang, X.; Wei, R.; Zhang, J. Enormous-sulfur-content cathode and excellent electrochemical performance of Li-S battery accouched by surface engineering of Ni-doped WS2@rGO nanohybrid as a modified separator. J. Colloid Interface Sci. 2022, 609, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wang, Z.; Zhang, B.; Liu, H.; Liu, W.; Zhao, J.; Ma, Z.; Dong, W.; Su, Z. Reduced graphene oxide/TiO2(B) nanocomposite-modified separator as an efficient inhibitor of polysulfide shuttling in Li-S batteries. RSC Adv. 2020, 10, 4538–4544. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Ren, J.; Zhang, Y.; Tan, T.; Chen, Z. A PPy/ZnO functional interlayer to enhance electrochemical performance of lithium/sulfur batteries. Nanoscale Res. Lett. 2018, 13, 307. [Google Scholar] [CrossRef]
- Hong, S.; Han, Y.; Zhang, K.; Wang, M.; Cui, N.; Du, X.; Li, Q.; Huang, Y.; Jiang, F.; Xie, K. TiO2 Nanosheet-Redox Graphene Oxide/Sulphur Cathode for High-Performance Lithium-Sulphur Batteries. J. Nanosci. Nanotechnol. 2020, 20, 1715–1722. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Li, J.; Wang, X.; Zhang, Y.; Guo, Y.; Ding, J.; Wang, L. Bifunctional separator with sandwich structure for high-performance lithium-sulfur batteries. J. Colloid Interface Sci. 2020, 559, 13–20. [Google Scholar] [CrossRef]
- Ou, X.; Yu, Y.; Wu, R.; Tyagi, A.; Zhuang, M.; Ding, Y.; Abidi, I.H.; Wu, H.; Wang, F.; Luo, Z. Shuttle Suppression by Polymer-Sealed Graphene-Coated Polypropylene Separator. ACS Appl. Mater. Interfaces 2018, 10, 5534–5542. [Google Scholar] [CrossRef]
Thermophysical Properties | NCNF/TiO2/DE-600 | NCNF/TiO2/DE-700 | NCNF/TiO2/DE-800 |
---|---|---|---|
BET surface area(m2 g−1) | 3.7 | 80.3 | 122.1 |
Pore volume(cm3 g−1) | 0.0039 | 0.045 | 0.066 |
Average pore size(nm) | 6.07 | 6.54 | 3.70 |
Median pore width (nm) | 0.754 | 0.745 | 0.745 |
Cell | I (cm2 s−1) | II (cm2 s−1) | III and IV (cm2 s−1) |
---|---|---|---|
No interlayer | (1.24 ± 0.01) × 10−10 | (4.71 ± 0.02) × 10−10 | (5.69 ± 0.05) × 10−10 |
NCNF/TiO2/DE-600 | (3.24 ± 0.11) × 10−10 | (4.01 ± 0.43) × 10−10 | (1.48 ± 0.04) × 10−9 |
NCNF/TiO2/DE-700 | (5.31 ± 0.01) × 10−10 | (5.38 ± 0.20) × 10−10 | (1.71 ± 0.00) × 10−9 |
NCNF/TiO2/DE-800 | (1.37 ± 0.01) × 10−9 | (4.72 ± 0.04) × 10−9 | (5.88 ± 0.12) × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, W.; Wu, X.; Shu, Y.; Zha, Y.; Liu, S. Design of Composite N-Doped Carbon Nanofiber/TiO2/Diatomite Separator for Lithium–Sulfur Batteries. Materials 2024, 17, 5615. https://doi.org/10.3390/ma17225615
Xiao W, Wu X, Shu Y, Zha Y, Liu S. Design of Composite N-Doped Carbon Nanofiber/TiO2/Diatomite Separator for Lithium–Sulfur Batteries. Materials. 2024; 17(22):5615. https://doi.org/10.3390/ma17225615
Chicago/Turabian StyleXiao, Wenjie, Xiaoyu Wu, Yang Shu, Yitao Zha, and Sainan Liu. 2024. "Design of Composite N-Doped Carbon Nanofiber/TiO2/Diatomite Separator for Lithium–Sulfur Batteries" Materials 17, no. 22: 5615. https://doi.org/10.3390/ma17225615
APA StyleXiao, W., Wu, X., Shu, Y., Zha, Y., & Liu, S. (2024). Design of Composite N-Doped Carbon Nanofiber/TiO2/Diatomite Separator for Lithium–Sulfur Batteries. Materials, 17(22), 5615. https://doi.org/10.3390/ma17225615