Miniaturized Shear Testing: In-Plane and Through-Thickness Characterization of Plywood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Process of the Miniaturized Shear Test Samples
2.2. Radiata Pine Plywood Samples
2.3. Shear Strength Characterization Tests
2.4. Manufacturing of Miniaturized Shear Test Samples in Three Plywood Directions
3. Results and Analysis
3.1. Failure Mechanisms in Orthogonal Shear Planes
3.2. Representative Shear Response in Plywood Panels
4. Method Limitations and Further Research
4.1. Numerical Modeling for Enhanced Accuracy of Shear Property Determination
4.2. Upscaling the Miniaturized Shear Test Approach for Plywood
4.3. Applying the Method for Anisotropy Characterization of Wood and Wood-Based Products
4.4. Moisture and Temperature Impacts on Plywood: An Identified Research Gap
5. Conclusions
- The τxy and τyx samples, representing the parallel in-plane shear directions, exhibited a more elastic and ductile response. These samples displayed the highest mean ultimate shear strengths, at 6.8 MPa and 7.3 MPa, respectively, as well as the highest shear moduli of 0.095 GPa and 0.087 GPa.
- In contrast, the τxz and τyz samples, representing the cross-plane shear directions, demonstrated a more plastic deformation behavior. These samples reached their maximum strengths (5.6 MPa and 7.1 MPa, respectively) at significantly higher deformations (27.0–47.1%) due to the complex interaction between the wood veneers and adhesive layers.
- The plywood panels with bioadhesive exhibited greater overall strength in the parallel in-plane directions (τxy and τyx) but also showed higher variability in the shear modulus compared to the other orientations.
- These findings highlight plywood’s orthotropic and heterogeneous nature, particularly at smaller scales. The use of miniaturized samples enabled increased sample sizes, providing valuable data for developing and validating finite element models of plywood behavior.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elmas, S.; Jaaranen, J.; Markou, A.A.; Filz, G.H.; Koponen, S. Geometrically nonlinear behaviour of actively twisted and bent plywood. Eng. Struct. 2024, 302, 117300. [Google Scholar] [CrossRef]
- Gerrand, C. The equivalent orthotropic elastic properties of plywood. Wood Sci. Technol. 1987, 21, 335–348. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Z.; Zhou, G.; Leng, W.; Mei, C. Understanding the interaction between bonding strength and strain distribution of plywood. Int. J. Adhes. Adhes. 2020, 98, 102506. [Google Scholar] [CrossRef]
- Oñate, A.; Fernández, J.; Saavedra, K. Numerical simulation on the influence of delamination on the critical buckling load of CLT panels. Eng. Struct. 2023, 286, 116029. [Google Scholar] [CrossRef]
- Ferreira, B.S.; Arroyo, F.N.; Kondo, M.Y.; dos Santos, H.F.; Barreto, R.L.; Dias, A.M.P.G.; Lahr, F.A.R.; Christoforo, A.L.; de Campos, C.I. Physical and Mechanical Properties of Plywood Produced with Thermally Treated Pinus taeda Veneers. Forests 2022, 13, 1398. [Google Scholar] [CrossRef]
- Helgi Library. Which Country Produces the Most Plywood? Available online: https://www.helgilibrary.com/charts/which-country-produces-the-most-plywood/ (accessed on 1 November 2024).
- ARAUCO. Renewable for Better Life: The Warmth of Natural Wood Araucoply. Available online: https://na.arauco.com/en/resources/download/ARAUCOPLY_The_Warmth_of_Natural_Wood (accessed on 1 November 2024).
- OEC (Observatory of Economic Complexity). Plywood in Chile. Available online: https://oec.world/en/profile/bilateral-product/plywood/reporter/chl (accessed on 1 November 2024).
- FOA (New Zealand Forest Owners Association). Sustainable Plantations. Available online: https://www.nzfoa.org.nz/plantation-forestry/sustainable-plantations (accessed on 1 November 2024).
- Conaf. Plantaciones Forestales. Available online: https://www.conaf.cl/manejo-de-ecosistemas/gestion-forestal-suelos-y-agua/plantaciones-forestales/ (accessed on 1 November 2024).
- FAO. Resumen del Estado Actual del Manejo y Ordenación Forestal en Chile. Available online: https://www.fao.org/4/j2628s/J2628S06.htm (accessed on 1 November 2024).
- Cartwright, D.; Gaston, C. Chile’s forest products markets—A plantation success story. In UNECE/FAO Forest Products Annual Market Review, 2001–2002; United Nations Economic Commission for Europe (UNECE): Geneva, Switzerland, 2002; pp. 53–60. Available online: https://unece.org/DAM/timber/docs/rev-02/rev02.htm (accessed on 1 November 2024).
- Bekhta, P.; Pizzi, A.; Kusniak, I.; Bekhta, N.; Chernetskyi, O.; Nuryawan, A. A Comparative Study of Several Properties of Plywood Bonded with Virgin and Recycled LDPE Films. Materials 2022, 15, 4942. [Google Scholar] [CrossRef]
- Tuninetti, V.; Alzugaray, R.; González, J.; Valenzuela, M.; Jaramillo, A.; Diez, E. Root cause and vibration analysis to increase veneer manufacturing process efficiency: A case study on an industrial peeling lathe. Eur. J. Wood Wood Prod. 2021, 79, 951–966. [Google Scholar] [CrossRef]
- Birinci, E.; Kaymakci, A. Effect of Freeze–Thaw Cycling on the Screw Direct Withdrawal Resistance of Beech, Ozigo, and Okoume Plywoods. Forests 2023, 14, 1243. [Google Scholar] [CrossRef]
- Spîrchez, C.; Lunguleasa, A.; Popescu, C.M.; Avram, A.; Ionescu, C.S. Properties of Un-Torrefied and Torrefied Poplar Plywood (PW) and Medium-Density Fiberboard (MDF). Appl. Sci. 2023, 13, 11950. [Google Scholar] [CrossRef]
- Sutiawan, J.; Syahfitri, A.; Purnomo, D.; Sudarmanto; Narto; Akbar, F.; Triwibowo, D.; Ismadi; Amanda, P.; Kusumah, S.S.; et al. Characterization and Application of Non-Formaldehyde Binder Based Citric Acid, Maleic Acid, and Molasses Adhesive for Plywood Composite. Polymers 2023, 15, 3897. [Google Scholar] [CrossRef]
- Kamperidou, V.; Aidinidis, E.; Barboutis, I. Impact of structural defects on the surface quality of hardwood species sliced veneers. Appl. Sci. 2020, 10, 6265. [Google Scholar] [CrossRef]
- Barboutis, I.; Kamperidou, V. Properties of two different thicknesses 3-ply plywood of tree-of-heaven veneers. In Proceedings of the 22nd International Scientific Conference, Zagreb, Croatia, 21 October 2011; pp. 9–16. [Google Scholar]
- Núñez-Decap, M.; Sandoval-Valderrama, B.; Opazo-Carlsson, C.; Moya-Rojas, B.; Vidal-Vega, M.; Opazo-Vega, A. Use of Carbon and Basalt Fibers with Adhesives to Improve Physical and Mechanical Properties of Laminated Veneer Lumber. Appl. Sci. 2023, 13, 10032. [Google Scholar] [CrossRef]
- Shalbafan, A.; Thoemen, H. Development of Mineral-Bonded Plywood with Magnesium Oxychloride as a Binder Using the Hot-Pressing Process. Polymers 2023, 15, 805. [Google Scholar] [CrossRef] [PubMed]
- Bekhta, P.; Hiziroglu, S.; Potapova, O.; Sedliacik, J. Shear strength of exterior plywood panels pressed at low temperature. Materials 2009, 2, 876–882. [Google Scholar] [CrossRef]
- Katz, J.L.; Spencer, P.; Wang, Y.; Misra, A.; Marangos, O.; Friis, L. On the anisotropic elastic properties of woods. J. Mater. Sci. 2008, 43, 139–145. [Google Scholar] [CrossRef]
- Charuk, A.; Gawdzińska, K.; Dunaj, P. Finite Element Modeling of the Dynamic Response of Plywood. Materials 2024, 17, 4358. [Google Scholar] [CrossRef]
- Sudo, R.; Aoki, K. Investigation of mechanical properties and elucidation of factors affecting wood-based structural panels under embedment stress with a circular dowel II: Detailed observation for plywood and OSB using DIC and CT scanning. J. Wood Sci. 2023, 69, 36. [Google Scholar] [CrossRef]
- PS 1-22; Voluntary Product Standard PS 1-19: Structural Plywood. National Institute of Standards and Technology, U.S. Department of Commerce: Gaithersburg, MD, USA, 2023.
- Krüger, R.; Buchelt, B.; Wagenführ, A. New method for determination of shear properties of wood. Wood Sci. Technol. 2018, 52, 1555–1568. [Google Scholar] [CrossRef]
- Brabec, M.; Lagaňa, R.; Milch, J.; Tippner, J.; Sebera, V. Utilization of digital image correlation in determining of both longitudinal shear moduli of wood at single torsion test. Wood Sci. Technol. 2017, 51, 29–45. [Google Scholar] [CrossRef]
- Guan, C.; Zhang, H.; Wang, X.; Miao, H.; Zhou, L.; Liu, F. Experimental and theoretical modal analysis of full-sized wood composite panels supported on four nodes. Materials 2017, 10, 683. [Google Scholar] [CrossRef]
- Demirkir, C.; Demir, A.; Ozturk, H.; Aydin, I. The Effect of Sheathing Material on Racking Performance of Plywood Shear Wall. Drv. Ind. 2022, 73, 25–33. [Google Scholar] [CrossRef]
- Bachtiar, E.V.; Rüggeberg, M.; Hering, S.; Kaliske, M.; Niemz, P. Estimating shear properties of walnut wood: A combined experimental and theoretical approach. Mater. Struct. 2017, 50, 248. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, N. Evaluation of a modified Iosipescu shear test method for determining the shear properties of clear wood. Wood Sci. Technol. 2017, 51, 323–343. [Google Scholar] [CrossRef]
- Krüger, R.; Wagenführ, A. Comparison of methods for determining shear modulus of wood. Eur. J. Wood Wood Prod. 2020, 78, 1087–1094. [Google Scholar] [CrossRef]
- ISO 12465:2007; Plywood—Specifications. ISO: Geneva, Switzerland, 2007.
- ASTM D1037-12; Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D5456-21e1; Standard Specification for Evaluation of Structural Composite Lumber Products. ASTM International: West Conshohocken, PA, USA, 2023.
- EN 789:2004; Timber Structures—Test Methods—Determination of Mechanical Properties of Wood-Based Panels. European Committee for Standardization: Brussels, Belgium, 2004.
- Wang, T.; Wang, Y.; Crocetti, R.; Wålinder, M. In-plane mechanical properties of birch plywood. Constr. Build. Mater. 2022, 340, 127852. [Google Scholar] [CrossRef]
- Ostapska, K.; Malo, K.A. New approach to testing shear in wood on structural scale. Int. J. Solids Struct. 2021, 212, 46–60. [Google Scholar] [CrossRef]
- Breyer, R.; Cannon, M.; Jennings, J.; Ashley, S. The Value of Transitioning from the Lap Shear to an Internal Bond for Testing Plywood. For. Prod. J. 2022, 72, 29–34. [Google Scholar] [CrossRef]
- Ćehić, M.; Omer, S.-E.; Hodžić, A. Influence construction and properties of plywood on areas of their application in wooden constructions. In Proceedings of the 12th International Research/Expert Conference ”Trends in the Development of Machinery and Associated Technology”, Istanbul, Turkey, 26–30 August 2008. [Google Scholar]
- Arriaga-Martitegui, F.; Peraza-Sánchez, F.; García-Esteban, L. Characteristic values of the mechanical properties of radiata pine plywood and the derivation of basic values of the layers for a calculation method. Biosyst. Eng. 2008, 99, 256–266. [Google Scholar] [CrossRef]
- Sugahara, E.; Casagrande, B.; Arroyo, F.; De Araujo, V.; Santos, H.; Faustino, E.; Christoforo, A.; Campos, C. Comparative Study of Plywood Boards Produced with Castor Oil-Based Polyurethane and Phenol-Formaldehyde Using Pinus taeda L. Veneers Treated with Chromated Copper Arsenate. Forests 2022, 13, 1144. [Google Scholar] [CrossRef]
- Gonçalves, S.; Paiva, N.T.; Martins, J.; Magalhães, F.D.; Carvalho, L.H. Effect of Lignosulphonates on the Moisture Resistance of Phenol–Formaldehyde Resins for Exterior Plywood. Materials 2024, 17, 3715. [Google Scholar] [CrossRef]
- Dahl, K.B.; Malo, K.A. Nonlinear shear properties of spruce softwood: Experimental results. Wood Sci. Technol. 2009, 43, 539–558. [Google Scholar] [CrossRef]
- Panchal, M.; Kaushik, L.; Ravi, K.R.; Khatirkar, R.; Choi, S.H.; Singh, J. Recent advances in the in-plane shear testing of Mg alloy sheets. J. Magnes. Alloys 2023, 11, 405–424. [Google Scholar] [CrossRef]
- ASTM B831-22; Standard Test Method for Shear Testing of Thin Aluminum Alloy Products. ASTM International: West Conshohocken, PA, USA, 2022.
- Guseinov, K.; Kudryavtsev, O.; Bezmelnitsyn, A.; Sapozhnikov, S. Determination of Interlaminar Shear Properties of Fibre-Reinforced Composites under Biaxial Loading: A New Experimental Approach. Polymers 2022, 14, 2575. [Google Scholar] [CrossRef] [PubMed]
- ASTM D143-21; Standard Test Methods for Small Clear Specimens of Timber. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D905-08; Standard Test Method for Strength Properties of Adhesive Bonds in Shear by Compression Loading. ASTM International: West Conshohocken, PA, USA, 2013.
- Hong, C.; Lee, S.; Ji, W. Shear strength determining mechanism of a +/−45 laminate under tensile loading. Compos. Struct. 2023, 326, 117627. [Google Scholar] [CrossRef]
- ASTM D3518/D3518M-18; Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate. ASTM International: West Conshohocken, PA, USA, 2018.
- Ud Din, I.; Hao, P.; Panier, S.; Khan, K.A.; Aamir, M.; Franz, G.; Akhtar, K. Design of a New Arcan Fixture for In-plane Pure Shear and Combined Normal/Shear Stress Characterization of Fiber Reinforced Polymer Composites. Exp. Tech. 2020, 44, 231–240. [Google Scholar] [CrossRef]
- ASTM D7078/D7078M-19; Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method. ASTM International: West Conshohocken, PA, USA, 2021.
- Arcan, M.; Hashin, Z.; Voloshin, A. A method to produce uniform plane-stress states with applications to fiber-reinforced materials—A specially designed specimen yields material properties under pure shear or uniform plane-stress conditions. Exp. Mech. 1978, 18, 141–146. [Google Scholar] [CrossRef]
- Tuninetti, V.; Flores, P.; Valenzuela, M.; Pincheira, G.; Medina, C.; Duchene, L.; Habraken, A.M. Experimental characterization of the compressive mechanical behaviour of Ti6Al4V alloy at constant strain rates over the full elastoplastic range. Int. J. Mater. Form. 2020, 13, 709–724. [Google Scholar] [CrossRef]
- Tuninetti, V.; Gilles, G.; Milis, O.; Pardoen, T.; Habraken, A.M. Anisotropy and tension–compression asymmetry modeling of the room temperature plastic response of Ti–6Al–4V. Int. J. Plast. 2015, 67, 53–68. [Google Scholar] [CrossRef]
- Osanyintola, O.F.; Talukdar, P.; Simonson, C.J. Effect of initial conditions, boundary conditions and thickness on the moisture buffering capacity of spruce plywood. Energy Build. 2006, 38, 1283–1292. [Google Scholar] [CrossRef]
- Feujofack K, B.V.; Loss, C. Experimental campaign on the mechanical properties of Canadian small clear spruce-pine-fir wood: Experimental procedures, data curation, and data description. Data Brief 2023, 48, 109064. [Google Scholar] [CrossRef]
- De Windt, I.; Li, W.; Van den Bulcke, J.; Van Acker, J. Classification of uncoated plywood based on moisture dynamics. Constr. Build. Mater. 2018, 158, 814–822. [Google Scholar] [CrossRef]
- Brischke, C.; Alfredsen, G.; Humar, M.; Conti, E.; Cookson, L.; Emmerich, L.; Flæte, P.O.; Fortino, S.; Francis, L.; Hundhausen, U.; et al. Modelling the material resistance of wood—Part 3: Relative resistance in above and in ground situations—Results of a global survey. Forests 2021, 12, 590. [Google Scholar] [CrossRef]
- Brischke, C.; Alfredsen, G.; Humar, M.; Conti, E.; Cookson, L.; Emmerich, L.; Flæte, P.O.; Fortino, S.; Francis, L.; Hundhausen, U.; et al. Modeling the material resistance of wood—Part 2: Validation and optimization of the meyer-veltrup model. Forests 2021, 12, 576. [Google Scholar] [CrossRef]
- ASTM D4442-20; Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials. ASTM International: West Conshohocken, PA, USA, 2020.
- EN 321:2001; Wood-Based Panels—Determination of Moisture Resistance Under Cyclic Test Conditions. European Committee for Standardization: Brussels, Belgium, 2001.
- Karshenas, S.; Feely, J.P. Structural properties of used plywood. Constr. Build. Mater. 1996, 10, 553–563. [Google Scholar] [CrossRef]
- Gerhards, C.C. Effect of Moisture Content and Temperature on the Mechanical Properties of Wood: An Analysis of Immediate Effects. Wood Fiber 1982, 14, 4–36. [Google Scholar]
- Stadlmann, A.; Pramreiter, M.; Stingl, R.; Kurzböck, C.; Jost, T.; Müller, U. Durability of wood exposed to alternating climate test and natural weathering. Forests 2020, 11, 953. [Google Scholar] [CrossRef]
- Wind, M.C. Effects of Temperature and Moisture Content on the Bonding Performance of Mass Plywood Panels. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2007. [Google Scholar]
- Winandy, J.E.; Beaumont, R. Roof Temperatures in Simulated Attics; USDA: Madison, WI, USA, 1995; Volume 543.
Shear Direction | Property | Statistical Values | Number of Samples | Samples Group | Normality | Significant Difference | |
---|---|---|---|---|---|---|---|
F1 | F2 | ||||||
τxy | τFmax (MPa) | Mean | 6 | 6.788 | 9.561 | Only for F1 | Yes |
SD | 0.423 | 0.488 | |||||
Gs (GPa) | Mean | 0.095 | 0.120 | Yes | No | ||
SD | 0.029 | 0.011 | |||||
τyx | τFmax (MPa) | Mean | 7.291 | 9.231 | Yes | ||
SD | 0.463 | 1.121 | |||||
Gs (GPa) | Mean | 0.087 | 0.113 | No | |||
SD | 0.033 | 0.028 | |||||
τxz | τFmax (MPa) | Mean | 5.636 | 7.393 | Only for F1 | Yes | |
SD | 0.587 | 0.279 | |||||
Gs (GPa) | Mean | 0.039 | 0.036 | Yes | No | ||
SD | 0.003 | 0.003 | |||||
τyz | τFmax (MPa) | Mean | 6 (F1) 5 (F2) | 7.074 | 7.591 | Only for F2 | |
SD | 0.261 | 1.447 | |||||
Gs (GPa) | Mean | 0.046 | 0.039 | Only for F1 | Yes | ||
SD | 0.005 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuninetti, V.; Sandoval, M.; Cárdenas-Ramírez, J.P.; Oñate, A.; Miranda, A.; Soto-Zúñiga, P.; Arnett, M.; Leiva, J.; Cancino, R. Miniaturized Shear Testing: In-Plane and Through-Thickness Characterization of Plywood. Materials 2024, 17, 5621. https://doi.org/10.3390/ma17225621
Tuninetti V, Sandoval M, Cárdenas-Ramírez JP, Oñate A, Miranda A, Soto-Zúñiga P, Arnett M, Leiva J, Cancino R. Miniaturized Shear Testing: In-Plane and Through-Thickness Characterization of Plywood. Materials. 2024; 17(22):5621. https://doi.org/10.3390/ma17225621
Chicago/Turabian StyleTuninetti, Víctor, Moisés Sandoval, Juan Pablo Cárdenas-Ramírez, Angelo Oñate, Alejandra Miranda, Paula Soto-Zúñiga, Michael Arnett, Jorge Leiva, and Rodrigo Cancino. 2024. "Miniaturized Shear Testing: In-Plane and Through-Thickness Characterization of Plywood" Materials 17, no. 22: 5621. https://doi.org/10.3390/ma17225621
APA StyleTuninetti, V., Sandoval, M., Cárdenas-Ramírez, J. P., Oñate, A., Miranda, A., Soto-Zúñiga, P., Arnett, M., Leiva, J., & Cancino, R. (2024). Miniaturized Shear Testing: In-Plane and Through-Thickness Characterization of Plywood. Materials, 17(22), 5621. https://doi.org/10.3390/ma17225621