Research on the Reusability of Bentonite Waste Materials for Residual Chlorine Removal
Abstract
:1. Introduction
2. Materials and Methods
- -
- Bentonite clay samples (fractions of 0.8–2.0 mm) (waste material from building construction);
- -
- Sodium hypochlorite solution (1000 ppm);
- -
- Stormwater samples (collected from disinfected areas);
- -
- Filtration column, mixer, and glass jars (6 units);
- -
- Sieves (7 units);
- -
- Microscope (Celestron, Digital Microscope Imager, Biolight 200, Celeston, Torrance, CA, USA);
- -
- Laboratory scales (Kern PCB, max of 2500 g d = 0.01 g; KERN PCB-FACTORY GmbH, Regensburg, Germany);
- -
- Spectrophotometer (Thermo Scientific Genesys 10 S, Waltham, MA, USA);
- -
- A portable conductivity measurement device (Cond315i, WTW, Weilheim, Germany) and pH-meter instrument (WTW pH 323, WTW, Weilheim, Germany);
- -
- A chlorine meter (CL200 ExStik, measuring range of 0.01 ppm–10 ppm, accuracy of ±10% for reading ±0.01 ppm, temperature range of −5 to +90 °C, automatic self-calibration; Extech, Beijing, China).
2.1. Sieve Test and Microscopy
2.2. Static and Dynamic Experiments
3. Results and Discussions
3.1. Sieve Analysis and Microscopy
3.2. Static and Dynamic Experiments
4. Conclusions
- Following the principles of circularity, recycled construction waste could be used as a low-cost material to reduce stormwater polluted with residual chlorine. The application of construction waste materials in green infrastructure as a filter layer is an innovative and sustainable solution to reduce stormwater contamination.
- The sieve analysis indicated that the optimal size of bentonite clay to retain pollutants is 0.8–2.0 mm.
- The microscopy analysis of bentonite clay before and after its interaction with sodium hypochlorite solution showed visible changes in the bentonite surface structure. A white color and a layer up to 1 mm thick appeared on the bentonite surfaces after the filtration process, indicating the capacity of bentonite clay to retain residual chlorine.
- The static and dynamic experiments (leaching and filtration tests) reported a residual chlorine retention efficiency of bentonite clay of up to 44%. The experiments revealed that bentonite clay might be suitable for application as one of the filtration layers in green infrastructure to reduce stormwater pollution from residual chlorine.
- It is recommended to continue investigations with other construction waste materials suitable for Green Deal recommendations, in order to decrease the amount of waste from construction and to encourage recycling processes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committe and the Committee of the Regions on Resource Efficiency Opportunities in the Building Sector/* COM/2014/0445 Final */. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A52014DC0445 (accessed on 28 September 2024).
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committe and the Committee of the Regions A New Circular Economy Action Plant for a Cleaner and More Competetive Europe COM/2020/98 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN (accessed on 28 September 2024).
- Purchase, C.K.; Al Zulayq, D.M.; O’Brien, B.T.; Kowalewski, M.J.; Berenjian, A.; Tarighaleslami, A.H.; Seifan, M. Circular Economy of Construction and DemolitionWaste: A Literature Review on Lessons, Challenges, and Benefits. Materials 2022, 15, 76. [Google Scholar] [CrossRef]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Brudler, S.; Arnbjerg-Nielsen, K.; Hauschild, M.; Ammitsøe, C.; Hénonin, J.; Rygaard, M. Life cycle assessment of point source emissions and infrastructure impacts of four types of urban stormwater systems. Water Res. 2019, 156, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Jeng, H.A.C.; Englande, A.J.; Bakeer, R.M.; Bradford, H.B. Impact of urban stormwater runoff on estuarine environmental quality. Estuar. Coast. Shelf Sci. 2005, 63, 513–526. [Google Scholar] [CrossRef]
- Guo, J.; Liao, M.; He, B.; Liu, J.; Hu, X.; Yan, D.; Wang, J. Impact of the COVID-19 pandemic on household disinfectant consumption behaviors and related environmental concerns: A questionnaire-based survey in China. J. Environ. Chem. Eng. 2021, 9, 106168. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, J.; Jiang, Y.; Shao, Y. High concentration and high dose of disinfectants and antibiotics used during the COVID-19 pandemic threaten human health. Environ. Sci. Eur. 2021, 33, 11. [Google Scholar] [CrossRef]
- Chu, W.; Fang, C.; Deng, Y.; Xu, Z. Intensified Disinfection Amid COVID-19 Pandemic Poses Potential Risks to Water Quality and Safety. Environ. Sci. Technol. 2021, 55, 4084–4086. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Wang, C.; Zhang, H.; Lei, P. Impact of the use of disinfectants on water environment in Wuhan during COVID-19 pandemic. Yangtze River 2020, 51, 29–33. [Google Scholar]
- Wang, L.; Zhang, X.; Chen, S.; Meng, F.; Zhang, D.; Liu, Y.; Li, M.; Liu, X.; Huang, X.; Qu, J. Spatial variation of dissolved organic nitrogen in Wuhan surface waters: Correlation with the occurrence of disinfection byproducts during the COVID-19 pandemic. Water Res. 2021, 198, 117138. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Lu, T.; Zhang, J.; Sun, L.; Hu, B.; Hu, J.; Peñuelas, J.; Zhu, L.; Qian, H. Residual chlorine disrupts the microbial communities and spreads antibiotic resistance in freshwater. J. Hazard. Mater. 2022, 423, 127152. [Google Scholar] [CrossRef]
- Valentukeviciene, M.; Andriulaityte, I.; Chadysas, V. Assessment of Residual Chlorine Interaction with Different Microelements in Stormwater Sediments. Molecules 2023, 28, 5358. [Google Scholar] [CrossRef] [PubMed]
- Bonin, L.; Vitry, V.; Olivier, M.G.; Bertolucci-Coelho, L. COVID-19: Effect of disinfection on corrosion of surfaces. Corros. Eng. Sci. Technol. 2020, 55, 693–695. [Google Scholar] [CrossRef]
- Parveen, N.; Chowdhury, S. Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. Environ. Sci. Pollut. Res. 2021, 29, 85742–85760. [Google Scholar] [CrossRef]
- Li, Z.; Song, G.; Bi, Y.; Gao, W.; He, A.; Lu, Y.; Wang, Y.; Jiang, G. Occurrence and distribution of disinfection byproducts in domestic wastewater effluent, tap water, and surface water during the SARS-CoV-2 pandemic in China. Environ. Sci. Technol. 2021, 55, 4103–4114. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, W.; Chen, Y.; Yin, W. Disinfection threatens aquatic ecosystems. Science 2020, 368, 146–147. [Google Scholar] [CrossRef]
- European Commission Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL Concerning Urban Wastewater Treatment (Recast) COM/2022/541 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0541 (accessed on 26 November 2023).
- Deng, Y. Low-cost adsorbents for urban stormwater pollution control. Front. Environ. Sci. Eng. 2020, 14, 83. [Google Scholar] [CrossRef]
- Valentukeviciene, M.; Andriulaityte, I.; Karczmarczyk, A.; Zurauskiene, R. Removal of Residual Chlorine from Stormwater Using Low-Cost Adsorbents and Phytoremediation. Environments 2024, 11, 101. [Google Scholar] [CrossRef]
- Feng, W.; Liu, Y.; Gao, L. Stormwater treatment for reuse: Current practice and future development—A review. J. Environ. Manag. 2022, 301, 113830. [Google Scholar] [CrossRef] [PubMed]
- Martins Vaz, I.C.; Istchuk, R.N.; Oneda, T.M.S.; Ghisi, E. Sustainable Rainwater Managementand Life Cycle Assessment: Challenges and Perspectives. Sustainability 2023, 15, 12133. [Google Scholar] [CrossRef]
- Chatzimentor, A.; Apostolopoulou, E.; Mazaris, A.D. A review of green infrastructure research in Europe: Challenges and opportunities. Landsc. Urban Plan. 2020, 198, 103775. [Google Scholar] [CrossRef]
- O’Sullivan, A.D.; Wicke, D.; Hengen, T.J.; Sieverding, H.L.; Stone, J.J. Life Cycle Assessment modelling of stormwater treatment systems. J. Environ. Manag. 2015, 149, 236–244. [Google Scholar] [CrossRef] [PubMed]
- European Union, 2013 European Union: European Commission, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Green Infrastructure (GI)—Enhancing Europe’s Natural Capital, COM/2013/0249 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52013DC0249 (accessed on 3 October 2024).
- Sharma, R.; Malaviya, P. Management of stormwater pollution using green infrastructure: The role of rain gardens. WIREs Water 2021, 8, e1507. [Google Scholar] [CrossRef]
- Yang, F.; Fu, D.; Liu, S.; Zevenbergen, C.; Singh, R.P. Hydrologic and Pollutant Removal Performance of Media Layers in Bioretention. Water 2020, 12, 921. [Google Scholar] [CrossRef]
- Vispo, C.; Geronimo, F.K.; Jeon, M.; Kim, L.-H. Performance Evaluation of Various Filter Media for Multi-Functional Purposes to Urban Constructed Wetlands. Sustainability 2024, 16, 287. [Google Scholar] [CrossRef]
- Westholm, L.J. Filter media for storm water treatment in sustainable cities: A review. Front. Chem. Eng. 2023, 5, 1149252. [Google Scholar] [CrossRef]
- Nurlybayev, R.E.; Zhuginissov, M.T.; Zhumadilova, Z.O.; Joldassov, A.A.; Orynbekov, Y.S.; Murzagulova, A.A. An Investigation of the Effects of Additives and Burning Temperature on the Properties of Products Based on Loam. Appl. Sci. 2022, 12, 3352. [Google Scholar] [CrossRef]
- Barbu, C.-Ș.; Sabău, A.-D.; Manoli, D.-M.; Șerbulea, M.-S.; Erbașu, R.; Țăpuși, D.; Szlachetka, O.; Dzięcioł, J.; Baryła, A.; Dohojda, M.; et al. Analysis of the Water/Cement/Bentonite Ratio Used for Construction of Cut-Off Walls. Buildings 2023, 13, 2922. [Google Scholar] [CrossRef]
- Zarifa, J.E.; Aliyeva, M.G.; Hamashayeva, M.J. Possibility of complex use of bentonite clays and modeling of research processes. J. Geol. Geogr. Geoecol. 2023, 32, 233–240. [Google Scholar] [CrossRef]
- Hussien, S.; Abbas, A.; Abdulrazzak, F. Adsorption of heavy metals on bentonite and modified bentonite clay, factors, kinetic and thermodynamic studies/a review. J. Mater. Chem. A 2020, 3, 77–89. [Google Scholar] [CrossRef]
- Vrînceanu, N.O.; Motelică, D.M.; Dumitru, M.; Calciu, I.; Tănase, V.; Preda, M. Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil: The Copșa Mică case study (Romania). CATENA 2019, 176, 336–342. [Google Scholar] [CrossRef]
- Alsaeed, R.; Alaji, B. Using Bentonite Clay as Coagulant Aid for Removing Low to Medium Turbidity Levels. Iran. J. Chem. Chem. Eng. 2022, 41, 4080–4086. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Das, S. Comparison of Sieving Techniques in Size Distribution and Estimation of Particle Size of a Bulk Sample. J. Sci. Res. Banaras Hindu Univ. 2023, 67, 1–5. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Wang, S.; Bai, L.; Deng, Y.; Tao, J. Effect of Pore Size Distribution and Amination on Adsorption Capacities of Polymeric Adsorbents. Molecules 2021, 26, 5267. [Google Scholar] [CrossRef] [PubMed]
- COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE EUROPEAN COUNCIL, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS The European Green Deal COM/2019/640 Finalю European Commission. The European Green Deal. COM/2019/640 Final. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 3 September 2024).
- Guidelines for the Waste Audits Before Demolition and Renovation Works of Buildings. Available online: https://ec.europa.eu/docsroom/documents/31521/attachments/1/translations/ (accessed on 20 September 2024).
Indicator | I | II | III | IV | V | VI |
---|---|---|---|---|---|---|
pH | 8.06 | 10.39 | 10.23 | 10.49 | 9.79 | 9.99 |
Conductivity, µS/cm | 49.4 | 285.0 | 161.0 | 265.0 | 105.1 | 97.2 |
Color, AV | 1.052 | 1.412 | 1.358 | 1.611 | 1.239 | 1.254 |
Turbidity, NTU | 0.069 | 0.041 | 0.368 | 0.611 | 0.245 | 0.265 |
Residual chlorine, | 3.14 | 2.04 | 1.76 | 1.75 | 2.51 | 2.63 |
ppm |
Indicator | I | II | III | IV | V | VI | VII | VIII |
---|---|---|---|---|---|---|---|---|
pH | 8.12 | 9.77 | 9.21 | 9.86 | 9.83 | 10.10 | 10.18 | 10.32 |
Conductivity, µS/cm | 2.20 | 129.3 | 49.4 | 172.3 | 143.9 | 138.2 | 136.4 | 130.8 |
Color, AV | 0.06 | 0.14 | 0.10 | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 |
Turbidity, NTU | 1.04 | 1.14 | 1.05 | 1.10 | 1.10 | 1.10 | 1.10 | 1.10 |
Residual chlorine, | - | - | 3.21 | 2.92 | 1.96 | 1.92 | 1.79 | 1.91 |
ppm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andriulaityte, I.; Valentukeviciene, M.; Zurauskiene, R. Research on the Reusability of Bentonite Waste Materials for Residual Chlorine Removal. Materials 2024, 17, 5647. https://doi.org/10.3390/ma17225647
Andriulaityte I, Valentukeviciene M, Zurauskiene R. Research on the Reusability of Bentonite Waste Materials for Residual Chlorine Removal. Materials. 2024; 17(22):5647. https://doi.org/10.3390/ma17225647
Chicago/Turabian StyleAndriulaityte, Ieva, Marina Valentukeviciene, and Ramune Zurauskiene. 2024. "Research on the Reusability of Bentonite Waste Materials for Residual Chlorine Removal" Materials 17, no. 22: 5647. https://doi.org/10.3390/ma17225647
APA StyleAndriulaityte, I., Valentukeviciene, M., & Zurauskiene, R. (2024). Research on the Reusability of Bentonite Waste Materials for Residual Chlorine Removal. Materials, 17(22), 5647. https://doi.org/10.3390/ma17225647