Multiple Preheating Processes for Suppressing Liquefaction Cracks in IN738LC Superalloy Fabricated by Electron Beam Powder Bed Fusion (EB-PBF)
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Multiple Preheating Process
2.2. Samples Fabrication
2.3. Microstructure Characterization
2.4. High-Temperature Endurance Strength Test
3. Results and Discussion
3.1. Effect of Preheating Temperature on Crack and Powder Sintering
3.2. Real-Time Detection of Surface Temperature Based on Dual-Band Infrared Thermometer
3.3. Liquefaction Crack Characterization
3.4. High-Temperature Durability
3.5. High-Temperature Creep Fracture Mechanism
3.6. Mechanism Analysis of Liquefaction Crack
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Name | Definition |
EB-PBF | Electron beam powder bed fusion |
L-PBF | Laser powder bed fusion |
GB | Grain boundary |
HAGB | High-angle grain boundary |
LAGB | Low-angle grain boundary |
CET | Columnar-to-equiaxed transition |
VIM | Vacuum induction melting |
EDM | Electric discharge machining |
OM | Optical microscope |
EDS | Energy-dispersive spectroscopy |
SEM | Scanning electron microscopy |
TEM | Transmission electron microscopy |
EBSD | Electron backscatter diffraction |
SAED | Selected area electron diffraction |
EPMA | Electron probe microanalyzer |
FIB | Focused ion beam |
BD | Building direction |
DRX | Dynamic recrystallization |
HAZ | Heat-affected zone |
KAM | Kernel average misorientation |
SED (J/mm2) | Surface energy density |
V (m/s) | The scanning speed of the electron beam |
TSub | The temperature of the substrate |
Tbed | The temperature of the powder bed |
If (mA) | Focusing on the current |
Is (mA) | Scanning electron beam current |
T (s) | Preheating times |
Θ (°) | The tilt angle of the SEM carrier table |
θMA (°) | Misorientation angles |
References
- Gell, M.; Duhl, D.N.; Giamei, A.F. The Development of Single Crystal Superalloy Turbine Blades. In Proceedings of the 4th International Symposium Superalloys, Champion, PA, USA, 21–25 September 1980; pp. 205–214. [Google Scholar] [CrossRef]
- Adomako, N.; Haghdadi, N.; Primig, S. Electron and laser-based additive manufacturing of Ni-based superalloys: A review of heterogeneities in microstructure and mechanical properties. Mater. Des. 2022, 223, 111245. [Google Scholar] [CrossRef]
- Li, Y.; Liang, X.; Yu, Y.; Wang, D.; Lin, F. Review on Additive Manufacturing of Single-Crystal Nickel-based Superalloys. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Bechtle, S.; Kumar, M.; Somerday, B.P.; Launey, M.E.; Ritchie, R.O. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Mater. 2009, 57, 4148–4157. [Google Scholar] [CrossRef]
- Strondl, A.; Palm, M.; Gnauk, J.; Frommeyer, G. Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM). Mater. Sci. Technol. 2011, 27, 876–883. [Google Scholar] [CrossRef]
- Li, Y.; Kan, W.; Zhang, Y.; Li, M.; Liang, X.; Yu, Y.; Lin, F. Microstructure, mechanical properties and strengthening mechanisms of IN738LC alloy produced by Electron Beam Selective Melting. Addit. Manuf. 2021, 47, 102371. [Google Scholar] [CrossRef]
- Basbozkurt, B.; Sarioglu, C. Comparison of Isothermal Oxidation Performance of IN939 Produced by Casting and Additive Manufacturing. High Temp. Corros. Mater. 2024, 101, 245–265. [Google Scholar] [CrossRef]
- Pröbstle, M.; Neumeier, S.; Hopfenmüller, J.; Freund, L.P.; Niendorf, T.; Schwarze, D.; Göken, M. Superior creep strength of a nickel-based superalloy produced by selective laser melting. Mater. Sci. Eng. A 2016, 674, 299–307. [Google Scholar] [CrossRef]
- Sundarajan, G. The effect of cavitation and microstructural damage on the intergranular creep fracture of nickel-base superalloys. Mater. Sci. Eng. 1985, 74, 55–73. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, J.; Cao, D. Research Progress in Nickel Base Single Crystal Superalloys. Key Eng. Mater. 2020, 861, 113–121. [Google Scholar] [CrossRef]
- Andurkar, M.; O’Donnell, V.; Keya, T.; Prorok, B.C.; Gahl, J.; Thompson, S.M. Fast neutron irradiation-induced hardening in Inconel 625 and Inconel 718 fabricated via laser powder bed fusion. Prog. Addit. Manuf. 2024. [Google Scholar] [CrossRef]
- Ding, Z.; Miao, K.; Chao, Q.; Xie, X.; Ji, X.; Wu, H.; Wang, X.; Fan, G. Achieving balanced mechanical properties in laser powder bed fusion processed Inconel 718 superalloy through a simplified heat treatment process. J. Mater. Sci. Technol. 2025, 218, 54–70. [Google Scholar] [CrossRef]
- Rielli, V.V.; Luo, M.; Farabi, E.; Haghdadi, N.; Primig, S. Interphase boundary segregation in IN738 manufactured via electron-beam powder bed fusion. Scr. Mater. 2024, 244, 116033. [Google Scholar] [CrossRef]
- Luo, M.; Liao, X.; Ringer, S.P.; Primig, S.; Haghdadi, N. Grain boundary network evolution in electron-beam powder bed fusion nickel-based superalloy Inconel 738. J. Alloys Compd. 2024, 972, 172811. [Google Scholar] [CrossRef]
- Doğu, M.N.; Ozer, S.; Yalçın, M.A.; Davut, K.; Obeidi, M.A.; Simsir, C.; Gu, H.; Teng, C.; Brabazon, D. A comprehensive study of the effect of scanning strategy on IN939 fabricated by powder bed fusion-laser beam. J. Mater. Res. Technol. 2024, 33, 5457–5481. [Google Scholar] [CrossRef]
- Bäreis, J.; Semjatov, N.; Renner, J.; Ye, J.; Zongwen, F.; Körner, C. Electron-optical in-situ crack monitoring during electron beam powder bed fusion of the Ni-Base superalloy CMSX-4. Prog. Addit. Manuf. 2023, 8, 801–806. [Google Scholar] [CrossRef]
- Dehoff, R.R.; Kirka, M.M.; List, F.A.; Unocic, K.A.; Sames, W.J. Crystallographic texture engineering through novel melt strategies via electron beam melting: Inconel 718. Mater. Sci. Technol. 2015, 31, 939–944. [Google Scholar] [CrossRef]
- Gruber, K.; Stopyra, W.; Kobiela, K.; Kohlwes, P.; Čapek, J.; Polatidis, E.; Kelbassa, I. Achieving high strength and ductility in Inconel 718: Tailoring grain structure through micron-sized carbide additives in PBF-LB/M additive manufacturing. Virtual Phys. Prototyp. 2024, 19, e2396064. [Google Scholar] [CrossRef]
- Lam, M.C.; Cruz, C.M.C.; Loustaunau, A.; Koumpias, A.; Haselhuhn, A.S.; Wessman, A.; Tin, S. Fatigue mechanisms at 450 °C of a highly twined (>70%) and HIP-densified IN718 superalloy additively manufactured by laser beam powder bed fusion. Int. J. Fatigue 2025, 190, 108629. [Google Scholar] [CrossRef]
- Prager, M.; Shira, C.S. Welding of precipitation-hardening nickel-base alloys. Weld. Res. Counc. Bull. 1968, 128. [Google Scholar]
- Chiang, M.F.; Chen, C. Induction-assisted laser welding of IN-738 nickel–base superalloy. Mater. Chem. Phys. 2009, 114, 415–419. [Google Scholar] [CrossRef]
- Carter, L.N.; Martin, C.; Withers, P.J.; Attallah, M.M. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J. Alloys Compd. 2014, 615, 338–347. [Google Scholar] [CrossRef]
- Cloots, M.; Uggowitzer, P.J.; Wegener, K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles. Mater. Des. 2016, 89, 770–784. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Xu, L.; Xu, J.; Ren, X.; Chen, X. Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy. Mater. Des. 2019, 183, 108105. [Google Scholar] [CrossRef]
- Wei, Q.; Du, S.; Nie, P.; Yao, C.; Huang, J. Liquefaction Characteristics and Cracking Behavior of the Grain Boundaries and Interdendritic Regions in Non-Weldable K447A Superalloy During Laser Re-Melting. Metall. Mater. Trans. A 2024, 55, 3492–3508. [Google Scholar] [CrossRef]
- Zhou, W.; Tian, Y.; Tan, Q.; Qiao, S.; Luo, H.; Zhu, G.; Shu, D.; Sun, B. Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion. Addit. Manuf. 2022, 58, 103016. [Google Scholar] [CrossRef]
- Xu, J.; Lin, X.; Guo, P.; Dong, H.; Wen, X.; Li, Q.; Xue, L.; Huang, W. The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy. J. Alloys Compd. 2018, 749, 859–870. [Google Scholar] [CrossRef]
- Chauvet, E.; Kontis, P.; Jägle, E.A.; Gault, B.; Raabe, D.; Tassin, C.; Blandin, J.-J.; Dendievel, R.; Vayre, B.; Abed, S.; et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting. Acta Mater. 2018, 142, 82–94. [Google Scholar] [CrossRef]
- Hagedorn, Y.C.; Risse, J.; Meiners, W.; Pirch, N.; Wissenbach, K.; Poprawe, R. Processing of Nickel Based Superalloy MAR M-247 by Means of High Temperature-Selective Laser Melting (HT-SLM); Taylor & Francis Group: London, UK, 2014; pp. 291–295. [Google Scholar] [CrossRef]
- Xu, J.; Lin, X.; Guo, P.; Hu, Y.; Wen, X.; Xue, L.; Liu, J.; Huang, W. The effect of preheating on microstructure and mechanical properties of laser solid forming IN-738LC alloy. Mater. Sci. Eng. A 2017, 691, 71–80. [Google Scholar] [CrossRef]
- Chauvet, E.; Tassin, C.; Blandin, J.-J.; Dendievel, R.; Martin, G. Producing Ni-base superalloys single crystal by selective electron beam melting. Scr. Mater. 2018, 152, 15–19. [Google Scholar] [CrossRef]
- GB/T 2039-2012; Metallic materials—Uniaxial creep testing method in tension. China National Standardization Administration Committee: Beijing, China, 2012.
- Montazeri, M.; Ghaini, F.M. The liquation cracking behavior of IN738LC superalloy during low power Nd:YAG pulsed laser welding. Mater. Charact. 2012, 67, 65–73. [Google Scholar] [CrossRef]
- Zhong, M.; Sun, H.; Liu, W.; Zhu, X.; He, J. Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy. Scr. Mater. 2005, 53, 159–164. [Google Scholar] [CrossRef]
- Han, K.; Wang, H.; Peng, F.; Zhang, B.; Shen, L. Investigation of microstructure and mechanical performance in IN738LC joint by vacuum electron beam welding. Vacuum 2019, 162, 214–227. [Google Scholar] [CrossRef]
- Lippold, C.P. Hot Cracking. In Welding Metallurgy and Weldability; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 84–129. [Google Scholar] [CrossRef]
- Tomus, D.; Rometsch, P.A.; Heilmaier, M.; Wu, X. Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting. Addit. Manuf. 2017, 16, 65–72. [Google Scholar] [CrossRef]
- Choisez, L.; Ding, L.; Marteleur, M.; Kashiwar, A.; Idrissi, H.; Jacques, P.J. Shear banding-activated dynamic recrystallization and phase transformation during quasi-static loading of β-metastable Ti—12 wt.% Mo alloy. Acta Mater. 2022, 235, 118088. [Google Scholar] [CrossRef]
- Grimmer, H.; Bollmann, W.; Warrington, D.H. Coincidence-site lattices and complete pattern-shift in cubic crystals. Acta Crystallogr. Sect. A 1974, 30, 197–207. [Google Scholar] [CrossRef]
- Guo, H.; Chaturvedi, M.C.; Richards, N.L.; McMahon, G.S. Interdependence of character of grain boundaries, intergranular segregation of boron and grain boundary liquation in simulated weld heat-affected zone in inconel 718. Scr. Mater. 1999, 40, 383–388. [Google Scholar] [CrossRef]
Element | Ni | Ti | Al | Co | Cr | C | Fe | Zr | Nb | Ta | Mo | Si | B | W | Mn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt.% | Bal. | 3.39 | 3.61 | 8.57 | 15.92 | 0.11 | 0.16 | 0.019 | 0.93 | 1.85 | 1.86 | 0.038 | 0.0077 | 2.75 | 0.013 |
The Process Parameters | Parameter Settings |
---|---|
Substrate temperature, Tp (°C) | 1000 |
Scanning speed, V (m/s) | 10–30 |
Focusing on the current, If (mA) | (−60) to 60 |
Scanning electron beam current, Is (mA) | 15–40 |
Preheating times, t (s) | 1–2–30 |
Multiple preheating times | 40 |
The Sample | Temperature (°C) | Stress (MPa) | Duration of Time (h) | Elongation (A%) |
---|---|---|---|---|
1 | 850 | 365 | 69.25 | 12.9 |
2 | 850 | 365 | 65.05 | 24.70 |
3 | 850 | 365 | 53.30 | 12.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Long, H.; Wei, B.; Zhou, J.; Lin, F. Multiple Preheating Processes for Suppressing Liquefaction Cracks in IN738LC Superalloy Fabricated by Electron Beam Powder Bed Fusion (EB-PBF). Materials 2024, 17, 5667. https://doi.org/10.3390/ma17225667
Li Y, Long H, Wei B, Zhou J, Lin F. Multiple Preheating Processes for Suppressing Liquefaction Cracks in IN738LC Superalloy Fabricated by Electron Beam Powder Bed Fusion (EB-PBF). Materials. 2024; 17(22):5667. https://doi.org/10.3390/ma17225667
Chicago/Turabian StyleLi, Yang, Hongyu Long, Bo Wei, Jun Zhou, and Feng Lin. 2024. "Multiple Preheating Processes for Suppressing Liquefaction Cracks in IN738LC Superalloy Fabricated by Electron Beam Powder Bed Fusion (EB-PBF)" Materials 17, no. 22: 5667. https://doi.org/10.3390/ma17225667
APA StyleLi, Y., Long, H., Wei, B., Zhou, J., & Lin, F. (2024). Multiple Preheating Processes for Suppressing Liquefaction Cracks in IN738LC Superalloy Fabricated by Electron Beam Powder Bed Fusion (EB-PBF). Materials, 17(22), 5667. https://doi.org/10.3390/ma17225667